lowlevel.tex 22.4 KB
Newer Older
1
2
3
4
5
6
7
\section{Proving equivalence of X25519 in C and Coq}
\label{sec:C-Coq}

In this section we prove the following theorem:
% In this section we outline the structure of our proofs of the following theorem:

\begin{informaltheorem}
benoit's avatar
benoit committed
8
9
      The implementation of X25519 in TweetNaCl (\TNaCle{crypto_scalarmult}) matches
      the specifications of RFC~7748~\cite{rfc7748} (\Coqe{RFC}).
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
\end{informaltheorem}

More formally:
\begin{lstlisting}[language=Coq]
Theorem body_crypto_scalarmult:
  (* VST boiler plate. *)
  semax_body
    (* Clight translation of TweetNaCl.  *)
    Vprog
    (* Hoare triples for fct calls. *)
    Gprog
    (* fct we verify. *)
    f_crypto_scalarmult_curve25519_tweet
    (* Our Hoare triple, see below. *)
    crypto_scalarmult_spec.
\end{lstlisting}

% We first describe the global structure of our proof (\ref{subsec:proof-structure}).
Using our formalization of RFC~7748 (\sref{sec:Coq-RFC}) we specify the Hoare
triple before proving its correctness with VST (\ref{subsec:with-VST}).
We provide an example of equivalence of operations over different number
representations (\ref{subsec:num-repr-rfc}).
% Then, we describe efficient techniques used in some of our more complex proofs (\ref{subsec:inversions-reflections}).


\subsection{Applying the Verifiable Software Toolchain}
\label{subsec:with-VST}

\begin{sloppypar}
      We now turn our focus to the formal specification of \TNaCle{crypto_scalarmult}.
      We use our definition of X25519 from the RFC in the Hoare triple and prove
      its correctness.
\end{sloppypar}

\subheading{Specifications.}
We show the soundness of TweetNaCl by proving a correspondence between
the C version of TweetNaCl and a pure function in Coq formalizing the RFC.
% why "pure" ?
% A pure function is a function where the return value is only determined by its
% input values, without observable side effects (Side effect are e.g. printing)
This defines the equivalence between the Clight representation and our Coq
definition of the ladder (\coqe{RFC}).

\begin{lstlisting}[language=CoqVST]
Definition crypto_scalarmult_spec :=
DECLARE _crypto_scalarmult_curve25519_tweet
WITH
  v_q: val, v_n: val, v_p: val, c121665:val,
  sh : share,
  q : list val, n : list Z, p : list Z
(*------------------------------------------*)
PRE [ _q OF (tptr tuchar),
     _n OF (tptr tuchar),
     _p OF (tptr tuchar) ]
PROP (writable_share sh;
      Forall (fun x => 0 <= x < 2^8) p;
      Forall (fun x => 0 <= x < 2^8) n;
      Zlength q = 32; Zlength n = 32;
      Zlength p = 32)
LOCAL(temp _q v_q; temp _n v_n; temp _p v_p;
      gvar __121665 c121665)
SEP  (sh [{ v_q }] <<(uch32)-- q;
      sh [{ v_n }] <<(uch32)-- mVI n;
      sh [{ v_p }] <<(uch32)-- mVI p;
      Ews [{ c121665 }] <<(lg16)-- mVI64 c_121665)
(*------------------------------------------*)
POST [ tint ]
PROP (Forall (fun x => 0 <= x < 2^8) (RFC n p);
      Zlength (RFC n p) = 32)
LOCAL(temp ret_temp (Vint Int.zero))
SEP  (sh [{ v_q }] <<(uch32)-- mVI (RFC n p);
      sh [{ v_n }] <<(uch32)-- mVI n;
      sh [{ v_p }] <<(uch32)-- mVI p;
      Ews [{ c121665 }] <<(lg16)-- mVI64 c_121665
\end{lstlisting}

In this specification we state preconditions like:
\begin{itemize}
      \item[] \VSTe{PRE}: \VSTe{_p OF (tptr tuchar)}\\
            The function \TNaCle{crypto_scalarmult} takes as input three pointers to
            arrays of unsigned bytes (\VSTe{tptr tuchar}) \VSTe{_p}, \VSTe{_q} and \VSTe{_n}.
      \item[] \VSTe{LOCAL}: \VSTe{temp _p v_p}\\
            Each pointer represent an address \VSTe{v_p},
            \VSTe{v_q} and \VSTe{v_n}.
      \item[] \VSTe{SEP}: \VSTe{sh [{ v_p $\!\!\}\!\!]\!\!\!$ <<(uch32)-- mVI p}\\
            In the memory share \texttt{sh}, the address \VSTe{v_p} points
            to a list of integer values \VSTe{mVI p}.
      \item[] \VSTe{Ews [{ c121665 $\!\!\}\!\!]\!$ <<(lg16)-- mVI64 c_121665}\\
            In the global memory share \texttt{Ews}, the address \VSTe{c121665} points
            to a list of 16 64-bit integer values corresponding to $a/4 = 121665$.
      \item[] \VSTe{PROP}: \VSTe{Forall (fun x => 0 <= x < 2^8) p}\\
            In order to consider all the possible inputs, we assume each
            element of the list \texttt{p} to be bounded by $0$ included and $2^8$
            excluded.
      \item[] \VSTe{PROP}: \VSTe{Zlength p = 32}\\
            We also assume that the length of the list \texttt{p} is 32. This defines the
            complete representation of \TNaCle{u8[32]}.
\end{itemize}

As postcondition we have conditions like:
\begin{itemize}
      \item[] \VSTe{POST}: \VSTe{tint}\\
            The function \TNaCle{crypto_scalarmult} returns an integer.
      \item[] \VSTe{LOCAL}: \VSTe{temp ret_temp (Vint Int.zero)}\\
            The returned integer has value $0$.
      \item[] \VSTe{SEP}: \VSTe{sh [{ v_q $\!\!\}\!\!]\!\!\!$ <<(uch32)-- mVI (RFC n p)}\\
            In the memory share \texttt{sh}, the address \VSTe{v_q} points
            to a list of integer values \VSTe{mVI (RFC n p)} where \VSTe{RFC n p} is the
            result of the \TNaCle{crypto_scalarmult} of \VSTe{n} and \VSTe{p}.
      \item[] \VSTe{PROP}: \VSTe{Forall (fun x => 0 <= x < 2^8) (RFC n p)}\\
            \VSTe{PROP}: \VSTe{Zlength (RFC n p) = 32}\\
            We show that the computation for \VSTe{RFC} fits in  \TNaCle{u8[32]}.
\end{itemize}

\TNaCle{crypto_scalarmult} computes the same result as \VSTe{RFC}
in Coq provided that inputs are within their respective bounds: arrays of 32 bytes.

The correctness of this specification is formally proven in Coq as
\coqe{Theorem body_crypto_scalarmult}.

% \begin{sloppypar}
% This specification (proven with VST) shows that \TNaCle{crypto_scalarmult} in C.
% \end{sloppypar}

% The Verifiable Software Toolchain uses a strongest postcondition strategy.
% The user must first write a formal specification of the function he wants to verify in Coq.
% This should be as close as possible to the C implementation behavior.
% This will simplify the proof and help with stepping through the Clight version of the software.
% With the range of inputs defined, VST mechanically steps through each instruction
% and ask the user to verify auxiliary goals such as array bound access, or absence of overflows/underflows.
% We call this specification a low level specification. A user will then have an easier
% time to prove that his low level specification matches a simpler higher level one.

% In order to further speed-up the verification process, it has to be know that to
% prove the specification \TNaCle{crypto_scalarmult}, a user only need the specification of e.g. \TNaCle{M}.
% This provide with multiple advantages: the verification by the Coq kernel can be done
% in parallel and multiple users can work on proving different functions at the same time.
% For the sake of completeness we proved all intermediate functions.

\subheading{Memory aliasing.}
The semicolon in the \VSTe{SEP} parts of the Hoare triples represents the \emph{separating conjunction} (often written as a star), which means that
the memory shares of \texttt{q}, \texttt{n} and \texttt{p} do not overlap.
In other words,
we only prove correctness of \TNaCle{crypto_scalarmult} when it is called without aliasing.
But for other TweetNaCl functions, like the multiplication function \texttt{M(o,a,b)}, we cannot ignore aliasing, as it is called in the ladder in an aliased manner.

In VST, a simple specification of this function will assume that the pointer arguments
point to non-overlapping space in memory.
When called with three memory fragments (\texttt{o, a, b}),
the three of them will be consumed. However assuming this naive specification
when \texttt{M(o,a,a)} is called (squaring), the first two memory areas (\texttt{o, a})
are consumed and VST will expect a third memory section (\texttt{a}) which does not \emph{exist} anymore.
Examples of such cases are illustrated in \fref{tikz:MemSame}.
\begin{figure}[h]%
      \centering%
benoit's avatar
benoit committed
165
	  \include{tikz/memory_same_sh}%
166
	  %\vspace{-0.5cm}
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
      \caption{Aliasing and Separation Logic}%
      \label{tikz:MemSame}%
\end{figure}
As a result, a function must either have multiple specifications or specify which
aliasing case is being used.
The first option would require us to do very similar proofs multiple times for a same function.
We chose the second approach: for functions with 3 arguments, named hereafter \texttt{o, a, b},
we define an additional parameter $k$ with values in $\{0,1,2,3\}$:
\begin{itemize}
      \item if $k=0$ then \texttt{o} and \texttt{a} are aliased.
      \item if $k=1$ then \texttt{o} and \texttt{b} are aliased.
      \item if $k=2$ then \texttt{a} and \texttt{b} are aliased.
      \item else there is no aliasing.
\end{itemize}
In the proof of our specification, we do a case analysis over $k$ when needed.
This solution does not cover all the possible cases of aliasing over 3 pointers
(\eg \texttt{o} = \texttt{a} = \texttt{b}) but it is enough to satisfy our needs.

benoit's avatar
benoit committed
185
186
187
188
189
190
191
192
193
194
195
196
197
% \subheading{Improving verification speed.}
% To make the verification the smoothest, the Coq formal definition of the function
% should be as close as possible to the C implementation.
% Attempting to write definitions more ``elegantly'', for example through the extensive
% use of recursion, is often counter-productive because such definitions increase the
% amount of proofs required for, \eg bounds checking or loop invariants.

% In order to further speed-up the verification process, to prove the specification
% \TNaCle{crypto_scalarmult}, we only need the specification of the subsequently
% called functions (\eg \TNaCle{M}).
% This provide with multiple advantages: the verification by Coq can be
% done in parallel and multiple users can work on proving different functions at
% the same time.
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
% We proved all intermediate functions.


% %XXX-Peter: shouldn't verifying fixed-length for loops be rather standard?
% %XXX Benoit: it is simple if the argument is increasing or if the "recursive call"
% % is made before the computations.
% % This is not the case here: you compute idx 255 before 254...
%
% % Can we shorten the next paragraph?
% \subheading{Verifying \texttt{for} loops.}
% Final states of \texttt{for} loops are usually computed by simple recursive functions.
% However, we must define invariants which are true for each iteration step.
%
% Assume that we want to prove a decreasing loop where indexes go from 3 to 0.
% Define a function $g : \N \rightarrow State  \rightarrow State $ which takes as
% input an integer for the index and a state, then returns a state.
% It simulates the body of the \texttt{for} loop.
% Define the recursion: $f : \N \rightarrow State \rightarrow State $ which
% iteratively applies $g$ with decreasing index:
% \begin{equation*}
%   f ( i , s ) =
%   \begin{cases}
%   s & \text{if } s = 0 \\
%   f( i - 1 , g ( i - 1  , s )) & \text{otherwise}
%   \end{cases}
% \end{equation*}
% Then we have:
% \begin{align*}
%   f(4,s) &= g(0,g(1,g(2,g(3,s))))
% \end{align*}
% To prove the correctness of $f(4,s)$, we need to prove that intermediate steps
% $g(3,s)$; $g(2,g(3,s))$; $g(1,g(2,g(3,s)))$; $g(0,g(1,g(2,g(3,s))))$ are correct.
% Due to the computation order of recursive function, our loop invariant for
% $i\in\{0,1,2,3,4\}$ cannot use $f(i)$.
% To solve this, we define an auxiliary function with an accumulator such that
% given $i\in\{0,1,2,3,4\}$, it will compute the first $i$ steps of the loop.
%
% We then prove for the complete number of steps, the function with the accumulator
% and without returns the same result.
% We formalized this result in a generic way in Appendix~\ref{subsubsec:for}.
%
% Using this formalization, we prove that the 255 steps of the Montgomery ladder
% in C provide the same computations as in \coqe{RFC}.
% % %


\subsection{Number representation and C implementation}
\label{subsec:num-repr-rfc}

benoit's avatar
benoit committed
247
As described in \sref{subsec:Number-TweetNaCl}, numbers in \TNaCle{gf}
benoit's avatar
minor    
benoit committed
248
(array of 16 \TNaCle{long long}) are represented
benoit's avatar
WIP    
benoit committed
249
in base $2^{16}$ and we use a direct mapping to represent that array as a list
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
integers in Coq. However, in order to show the correctness of the basic operations,
we need to convert this number to an integer.
We reuse the mapping
$\text{\coqe{ZofList}} : \Z \rightarrow \texttt{list}~\Z \rightarrow \Z$ from \sref{sec:Coq-RFC}
and define a notation where $n$ is $16$, placing us with a radix of $2^{16}$.
\begin{lstlisting}[language=Coq]
Notation "Z16.lst A" := (ZofList 16 A).
\end{lstlisting}
To facilitate working in $\Zfield$, we define the \coqe{:GF} notation.
\begin{lstlisting}[language=Coq]
Notation "A :GF" := (A mod (2^255-19)).
\end{lstlisting}
Later in \sref{subsec:Zmodp}, we formally define $\Ffield$ as a field.
Equivalence between operations in $\Zfield$ (\ie under \coqe{:GF}) and in $\Ffield$ are easily proven.

Using these two definitions, we prove intermediate lemmas such as the correctness of the
multiplication \Coqe{Low.M} where \Coqe{Low.M} replicates the computations and steps done in C.
\begin{lemma}
benoit's avatar
benoit committed
268
269
      \label{lemma:mult_correct}
      \Coqe{Low.M} correctly implements the multiplication over $\Zfield$.
270
271
272
273
274
275
276
\end{lemma}
And specified in Coq as follows:
\begin{lstlisting}[language=Coq]
Lemma mult_GF_Zlength :
  forall (a:list Z) (b:list Z),
  Zlength a = 16 ->
  Zlength b = 16 ->
benoit's avatar
minor    
benoit committed
277
   (Z16.lst (Low.M a b)):GF = (Z16.lst a * Z16.lst b):GF.
278
279
280
281
282
283
284
\end{lstlisting}

However for our purpose, simple functional correctness is not enough.
We also need to define the bounds under which the operation is correct,
allowing us to chain them, guaranteeing us the absence of overflow.

\begin{lemma}
benoit's avatar
benoit committed
285
286
287
      \label{lemma:mult_bounded}
      if all the values of the input arrays are constrained between $-2^{26}$ and $2^{26}$,
      then the output of \coqe{Low.M} will be constrained between $-38$ and $2^{16} + 38$.
288
289
290
291
292
293
294
295
296
297
298
299
300
\end{lemma}
And seen in Coq as follows:
\begin{lstlisting}[language=Coq]
Lemma M_bound_Zlength :
  forall (a:list Z) (b:list Z),
  Zlength a = 16 ->
  Zlength b = 16 ->
  Forall (fun x => -2^26 < x < 2^26) a ->
  Forall (fun x => -2^26 < x < 2^26) b ->
    Forall (fun x => -38 <= x < 2^16 + 38) (Low.M a b).
\end{lstlisting}


benoit's avatar
benoit committed
301
302
303
304
305
306
307
308
% We prove the functional correctness of the multiplicative inverse over \Zfield,
% formalized as
% \begin{lstlisting}[language=Coq]
% Corollary Inv25519_Zpow_GF : forall (g:list Z),
%   length g = 16 ->
%   Z16.lst (Inv25519 g) :GF  =
%     (pow (Z16.lst g) (2^255-21)) :GF.
% \end{lstlisting}
309
310

\begin{sloppypar}
benoit's avatar
benoit committed
311
312
313
314
      By using each function \coqe{Low.M}; \coqe{Low.A}; \coqe{Low.Sq}; \coqe{Low.Zub};
      \coqe{Unpack25519}; \coqe{clamp}; \coqe{Pack25519}; \coqe{Inv25519}; \coqe{car25519};
      \coqe{montgomery_rec}, we defined in Coq \coqe{Crypto_Scalarmult} and with VST
      proved it matches the exact behavior of X25519 in TweetNaCl.
315
316
317
\end{sloppypar}

\begin{sloppypar}
benoit's avatar
benoit committed
318
319
320
321
322
      By proving that each function \coqe{Low.M}; \coqe{Low.A}; \coqe{Low.Sq};
      \coqe{Low.Zub}; \coqe{Unpack25519}; \coqe{clamp}; \coqe{Pack25519};
      \coqe{Inv25519}; \coqe{car25519} behave over \coqe{list Z} as their equivalent
      over \coqe{Z} with \coqe{:GF} (in \Zfield), we prove that given the same inputs
      \coqe{Crypto_Scalarmult} performs the same computation as \coqe{RFC}.
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
\end{sloppypar}

% This is formalized as follows in Coq:
\begin{lstlisting}[language=Coq]
Lemma Crypto_Scalarmult_RFC_eq :
  forall (n: list Z) (p: list Z),
  Zlength n = 32 ->
  Zlength p = 32 ->
  Forall (fun x => 0 <= x /\ x < 2 ^ 8) n ->
  Forall (fun x => 0 <= x /\ x < 2 ^ 8) p ->
  Crypto_Scalarmult n p = RFC n p.
\end{lstlisting}

Using this equality, we can directly replace \coqe{Crypto_Scalarmult} in our
specification by \coqe{RFC}, proving that TweetNaCl's X25519 implementation
respect RFC~7748.



%% PREVIOUS TEXT BELOW.

% \subsection{Reflections, inversions and packing}
% \label{subsec:inversions-reflections}
%
% We now turn our attention to the multiplicative inverse in $\Zfield$ and techniques
% to improve the verification speed of complex formulas.
%
% \subheading{Inversion in \Zfield.}
% We define a Coq version of the inversion mimicking
% the behavior of \TNaCle{inv25519} (see below) over \Coqe{list Z}.
% \begin{lstlisting}[language=Ctweetnacl]
% sv inv25519(gf o,const gf i)
% {
%   gf c;
%   int a;
%   set25519(c,i);
%   for(a=253;a>=0;a--) {
%     S(c,c);
%     if(a!=2&&a!=4) M(c,c,i);
%   }
%   FOR(a,16) o[a]=c[a];
% }
% \end{lstlisting}
% We specify this with 2 functions: a recursive \Coqe{pow_fn_rev}
% to simulate the \texttt{for} loop and a simple \Coqe{step_pow} containing the body.
% \begin{lstlisting}[language=Coq]
% Definition step_pow (a:Z)
%   (c:list Z) (g:list Z) : list Z :=
%   let c := Sq c in
%     if a <>? 2 && a <>? 4
%     then M c g
%     else c.
%
% Function pow_fn_rev (a:Z) (b:Z)
%   (c: list Z) (g: list Z)
%   {measure Z.to_nat a} : (list Z) :=
%   if a <=? 0
%     then c
%     else
%       let prev := pow_fn_rev (a - 1) b c g in
%         step_pow (b - a) prev g.
% \end{lstlisting}
% This \Coqe{Function} requires a proof of termination. It is done by proving the
% well-foundedness of the decreasing argument: \Coqe{measure Z.to_nat a}. Calling
% \Coqe{pow_fn_rev} 254 times allows us to reproduce the same behavior as the Clight definition.
% \begin{lstlisting}[language=Coq]
% Definition Inv25519 (x:list Z) : list Z :=
%   pow_fn_rev 254 254 x x.
% \end{lstlisting}
% Similarly we define the same function over $\Z$.
% \begin{lstlisting}[language=Coq]
% Definition step_pow_Z (a:Z) (c:Z) (g:Z) : Z :=
%   let c := c * c in
%   if a <>? 2 && a <>? 4
%     then c * g
%     else c.
%
% Function pow_fn_rev_Z (a:Z) (b:Z) (c:Z) (g: Z)
%   {measure Z.to_nat a} : Z :=
%   if (a <=? 0)
%     then c
%     else
%       let prev := pow_fn_rev_Z (a - 1) b c g in
%         step_pow_Z (b - a) prev g.
%
% Definition Inv25519_Z (x:Z) : Z :=
%   pow_fn_rev_Z 254 254 x x.
% \end{lstlisting}
% By using \lref{lemma:mult_correct}, we prove their equivalence in $\Zfield$.
% \begin{lemma}
% \label{lemma:Inv_equivalence}
% The function \coqe{Inv25519} over list of integers computes the same
% result at \coqe{Inv25519_Z} over integers in \Zfield.
% \end{lemma}
% This is formalized in Coq as follows:
% \begin{lstlisting}[language=Coq]
% Lemma Inv25519_Z_GF : forall (g:list Z),
%   length g = 16 ->
%   (Z16.lst (Inv25519 g)) :GF =
%   (Inv25519_Z (Z16.lst g)) :GF.
% \end{lstlisting}
%
% In TweetNaCl, \TNaCle{inv25519} computes an inverse in $\Zfield$.
% It uses Fermat's little theorem by raising to the power of $2^{255}-21$ with a
% square-and-multiply algorithm. The binary representation
% of $p-2$ implies that every step does a multiplications except for bits 2 and 4.
% To prove the correctness of the result we could use multiple strategies such as:
% \begin{itemize}
%   \item Proving it is a special case of square-and-multiply algorithm applied to $2^{255}-21$.
%   \item Unrolling the for loop step-by-step and applying the equalities
%   $x^a \times x^b = x^{(a+b)}$ and $(x^a)^2 = x^{(2 \times a)}$. We prove that
%   the resulting exponent is $2^{255}-21$.
% \end{itemize}
% We use the second method because it is simpler. However, it requires us to
% apply the unrolling and exponentiation formulas 255 times. This could be automated
% in Coq with tacticals such as \Coqe{repeat}, but it generates a proof object which
% will take a long time to verify.
%
% \subheading{Reflections.}
% In order to speed up the verification we use a
% technique called ``Reflection''. It provides us with flexibility, \eg we don't
% need to know the number of times nor the order in which the lemmas needs to be
% applied (chapter 15 in \cite{CpdtJFR}).
%
% The idea is to \emph{reflect} the goal into a decidable environment.
% We show that for a property $P$, we can define a decidable Boolean property
% $P_{bool}$ such that if $P_{bool}$ is \Coqe{true} then $P$ holds.
% $$\text{\textit{reify\_P}} : P_{bool} = \text{\textit{true}} \implies P$$
% By applying \textit{reify\_P} on $P$ our goal becomes $P_{bool} = true$.
% We then compute the result of $P_{bool}$. If the decision goes well we are
% left with the tautology $\text{\textit{true}} = \text{\textit{true}}$.
%
% With this technique we prove the functional correctness of the inversion over \Zfield.
% \begin{lemma}
% \label{cor:inv_comput_field}
% \Coqe{Inv25519} computes an inverse in \Zfield.
% \end{lemma}
% This statement is formalized as
% \begin{lstlisting}[language=Coq]
% Corollary Inv25519_Zpow_GF : forall (g:list Z),
%   length g = 16 ->
%   Z16.lst (Inv25519 g) :GF  =
%     (pow (Z16.lst g) (2^255-21)) :GF.
% \end{lstlisting}
%
% This reflection technique is also used where proofs requires some computing
% over a small and finite domain of variables to test e.g. for all $i$ such that
% $0 \le i < 16$.
% Using reflection we prove that we can split the for loop in \TNaCle{pack25519}
% into two parts.
% \begin{lstlisting}[language=Ctweetnacl]
% for(i=1;i<15;i++) {
%   m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
%   m[i-1]&=0xffff;
% }
% \end{lstlisting}
% The first loop computes the subtraction, and the second applies the carries.
% \begin{lstlisting}[language=Ctweetnacl]
% for(i=1;i<15;i++) {
%   m[i]=t[i]-0xffff
% }
%
% for(i=1;i<15;i++) {
%   m[i]=m[i]-((m[i-1]>>16)&1);
%   m[i-1]&=0xffff;
% }
% \end{lstlisting}
%
% This loop separation allows simpler proofs. The first loop is seen as the
% subtraction of \p. The resulting number represented in $\Zfield$ is invariant with
% the iteration of the second loop. This result in the proof that \TNaCle{pack25519}
% reduces modulo $\p$ and returns a number in base $2^8$.
% \begin{lstlisting}[language=Coq]
% Lemma Pack25519_mod_25519 :
%   forall (l:list Z),
%   Zlength l = 16 ->
%   Forall (fun x => -2^62 < x < 2^62) l ->
%   ZofList 8 (Pack25519 l) =
%   (Z16.lst l) mod (2^255-19).
% \end{lstlisting}
%
% By using each function \coqe{Low.M}; \coqe{Low.A}; \coqe{Low.Sq}; \coqe{Low.Zub};
% \coqe{Unpack25519}; \coqe{clamp}; \coqe{Pack25519}; \coqe{Inv25519}; \coqe{car25519}; \coqe{montgomery_rec},
% we defined a Coq definition \coqe{Crypto_Scalarmult} mimicking the exact behavior of X25519 in TweetNaCl.
%
% By proving that each function \coqe{Low.M}; \coqe{Low.A}; \coqe{Low.Sq}; \coqe{Low.Zub};
% \coqe{Unpack25519}; \coqe{clamp}; \coqe{Pack25519}; \coqe{Inv25519}; \coqe{car25519} behave over \coqe{list Z}
% as their equivalent over \coqe{Z} with \coqe{:GF} (in \Zfield), we prove that given the same inputs \coqe{Crypto_Scalarmult} performs the same computation as \coqe{RFC}.
% % This is formalized as follows in Coq:
% \begin{lstlisting}[language=Coq]
% Lemma Crypto_Scalarmult_RFC_eq :
%   forall (n: list Z) (p: list Z),
%   Zlength n = 32 ->
%   Zlength p = 32 ->
%   Forall (fun x => 0 <= x /\ x < 2 ^ 8) n ->
%   Forall (fun x => 0 <= x /\ x < 2 ^ 8) p ->
%   Crypto_Scalarmult n p = RFC n p.
% \end{lstlisting}
%
% This proves that TweetNaCl's X25519 implementation respect RFC~7748.