Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Benoit Viguier
coq-verif-tweetnacl
Commits
2d20d0fd
Commit
2d20d0fd
authored
Aug 30, 2019
by
Benoit Viguier
Browse files
add more definitions
parent
23f2d515
Changes
1
Hide whitespace changes
Inline
Side-by-side
paper/files.tex
View file @
2d20d0fd
...
...
@@ -6,11 +6,36 @@ We provide below the location of the most important definitions and lemmas of ou
\subsubsection
{
Definitions
}
~
\begin{table}
[h]
% \caption{Definitions}
% \label{table:specs}
\begin{tabular}
{
l | l | l
}
Definition
&
File
&
Description
\\
\hline
\texttt
{
ZofList
}
&
\texttt
{
ListsOp/ZofList.v
}
&
List
$
\leftrightarrow
$
\Z\\
\hline
\multicolumn
{
3
}{
c
}{
Elliptic Curve
\&
Fields
}
\\
\hline
\texttt
{
mcuType
}
&
\texttt
{
High/mc.v
}
&
$
M
_{
a,b
}$
\\
% \texttt{oncurve} & \texttt{High/mc.v} & Boolean decision of a point on a curve \\
\texttt
{
mc
}
&
\texttt
{
High/mc.v
}
&
$
M
_{
a,b
}
(
\K
)
$
\\
\texttt
{
neg
}
&
\texttt
{
High/mc.v
}
&
Negation
\\
\texttt
{
add
}
&
\texttt
{
High/mc.v
}
&
Addition
\\
\texttt
{
ec
\_
of
\_
mc
}
&
\texttt
{
High/mcgroup.v
}
&
$
M
_{
a,b
}
(
\K
)
\mapsto
E
(
\K
)
$
\\
\texttt
{
mc
\_
of
\_
ec
}
&
\texttt
{
High/mcgroup.v
}
&
$
E
(
\K
)
\mapsto
M
_{
a,b
}
(
\K
)
$
\\
\texttt
{
point
\_
x0
}
&
\texttt
{
High/montgomery.v
}
&
$
\chi
_
0
: M
_{
a,b
}
(
\K
)
\to
\K
$
\\
\texttt
{
point
\_
x
}
&
\texttt
{
High/montgomery.v
}
&
$
\chi
: M
_{
a,b
}
(
\K
)
\to
\K
\cup
\{\infty\}
$
\\
% \texttt{mcu\_no\_square} & \texttt{High/montgomery.v} & $a^2-4$ is not a square in \K \\
\texttt
{
cswap
}
&
\texttt
{
High/opt
\_
ladder.v
}
&
Conditional swap
\\
\texttt
{
opt
\_
montgomery
}
&
\texttt
{
High/opt
\_
ladder.v
}
&
Montgomery over
\K
\\
% \texttt{mcu\_no\_square} & \texttt{High/opt\_ladder.v} & $a^2-4$ is not a square in \K \\
\texttt
{
Zmodp.type
}
&
\texttt
{
High/Zmodp.v
}
&
$
\F
{
p
}$
with
$
p
=
\p
$
\\
\texttt
{
Zmodp2.type
}
&
\texttt
{
High/Zmodp2.v
}
&
$
\F
{
p
^
2
}$
with
$
p
=
\p
$
\\
\texttt
{
curve25519
\_
Fp
\_
ladder
}
&
\texttt
{
High/curve25519
\_
Fp.v
}
&
Montgomery ladder for the curve
$
M
_{
486662
,
1
}$
over
\F
{
p
}
\\
\texttt
{
curve25519
\_
Fp
\_
to
\_
Fp2
}
&
\texttt
{
High/curve25519
\_
Fp
\_
incl
\_
Fp2.v
}
&
$
\varphi
_
c: M
_{
486662
,
1
}
(
\F
{
p
}
)
\mapsto
M
_{
486662
,
1
}
(
\F
{
p
^
2
}
)
$
\\
\texttt
{
twist25519
\_
Fp
\_
ladder
}
&
\texttt
{
High/twist25519
\_
Fp.v
}
&
Montgomery ladder for the quadratic twist
$
M
_{
486662
,
2
}$
over
\F
{
p
}
\\
\texttt
{
twist25519
\_
Fp
\_
to
\_
Fp2
}
&
\texttt
{
High/twist25519
\_
Fp
\_
incl
\_
Fp2.v
}
&
$
\varphi
_
t: M
_{
486662
,
2
}
(
\F
{
p
}
)
\mapsto
M
_{
486662
,
1
}
(
\F
{
p
^
2
}
)
$
\\
% \texttt{primo} & \texttt{High/prime\_cert.v} & $\p$ is prime \\
\hline
\multicolumn
{
3
}{
c
}{
Generic ladder
}
\\
\hline
\texttt
{
get
\_
a
}
&
\texttt
{
Gen/Get
\_
abcdef.v
}
&
$
(
a,b,c,d,e,f
)
\mapsto
a
$
\\
...
...
@@ -22,7 +47,7 @@ We provide below the location of the most important definitions and lemmas of ou
\texttt
{
Ops.C
\_
0
}
&
\texttt
{
Gen/AMZubSqSel.v
}
&
Constant
$
0
$
\\
\texttt
{
Ops.C
\_
1
}
&
\texttt
{
Gen/AMZubSqSel.v
}
&
Constant
$
1
$
\\
\texttt
{
Ops.C
\_
121665
}
&
\texttt
{
Gen/AMZubSqSel.v
}
&
Constant
$
121665
$
\\
\texttt
{
Ops.Sel25519
}
&
\texttt
{
Gen/AMZubSqSel.v
}
&
Conditional
S
wap
\\
\texttt
{
Ops.Sel25519
}
&
\texttt
{
Gen/AMZubSqSel.v
}
&
Conditional
s
wap
\\
\texttt
{
Ops.Getbit
}
&
\texttt
{
Gen/GetBit.v
}
&
Bit selection
\\
\texttt
{
montgomery
\_
rec
}
&
\texttt
{
Gen/montgomery
\_
rec.v
}
&
Montgomery ladder
\\
\hline
...
...
@@ -35,7 +60,7 @@ We provide below the location of the most important definitions and lemmas of ou
\texttt
{
Mid.C
\_
0
}
&
\texttt
{
Mid/AMZubSqSel.v
}
&
Constant
$
0
$
\\
\texttt
{
Mid.C
\_
1
}
&
\texttt
{
Mid/AMZubSqSel.v
}
&
Constant
$
1
$
\\
\texttt
{
Mid.C
\_
121665
}
&
\texttt
{
Mid/AMZubSqSel.v
}
&
Constant
$
121665
$
\\
\texttt
{
Mid.Sel25519
}
&
\texttt
{
Mid/AMZubSqSel.v
}
&
Conditional
S
wap
\\
\texttt
{
Mid.Sel25519
}
&
\texttt
{
Mid/AMZubSqSel.v
}
&
Conditional
s
wap
\\
\texttt
{
Mid.car25519
}
&
\texttt
{
Mid/Car25519.v
}
&
Carry propagation
\\
\texttt
{
Mid.getbit
}
&
\texttt
{
Mid/GetBit.v
}
&
Bit selection
\\
\texttt
{
Inv25519
\_
Z
}
&
\texttt
{
Mid/Inv25519.v
}
&
$
x
^{
2
^{
255
}
-
21
}$
\\
...
...
@@ -55,7 +80,7 @@ We provide below the location of the most important definitions and lemmas of ou
\texttt
{
Low.C
\_
1
}
&
\texttt
{
Low/Constant.v
}
&
Constant
$
1
$
\\
\texttt
{
Low.C
\_
121665
}
&
\texttt
{
Low/Constant.v
}
&
Constant
$
121665
$
\\
\texttt
{
Low.C
\_
25519
}
&
\texttt
{
Low/Constant.v
}
&
Constant
$
2
^{
255
}
-
19
$
\\
\texttt
{
Low.Sel25519
}
&
\texttt
{
Low/Sel25519.v
}
&
Conditional
S
wap
\\
\texttt
{
Low.Sel25519
}
&
\texttt
{
Low/Sel25519.v
}
&
Conditional
s
wap
\\
\texttt
{
car25519
}
&
\texttt
{
Low/Car25519.v
}
&
Carry propagation
\\
\texttt
{
Low.getbit
}
&
\texttt
{
Low/GetBit.v
}
&
Bit selection
\\
\texttt
{
Inv25519
}
&
\texttt
{
Low/Inv25519.v
}
&
Recursive power
\\
...
...
@@ -63,11 +88,11 @@ We provide below the location of the most important definitions and lemmas of ou
\texttt
{
clamp
}
&
\texttt
{
Low/Prep
\_
n.v
}
&
Clamping
\\
\texttt
{
Unpack25519
}
&
\texttt
{
Low/Unpack25519.v
}
&
unpacking (mod
$
2
^{
255
}$
)
\\
\hline
\multicolumn
{
3
}{
c
}{
Instanciations of
\texttt
{
Ops
}
over
\Z
and list of
\Z
}
\\
\multicolumn
{
3
}{
c
}{
Instanciations of
\texttt
{
Ops
}}
\\
\hline
\texttt
{
Z
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
\\
\texttt
{
Z
25519
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
\\
\texttt
{
List
\_
Z
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
\\
\texttt
{
Z
25519
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
Instanciations over
\F
{
p
}
with
$
p
=
\p
$
\\
\texttt
{
Z
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
Instanciations over
\Z
\\
\texttt
{
List
\_
Z
\_
Ops
}
&
\texttt
{
Mid/Instances.v
}
&
Instanciations lists of
\Z
\\
\hline
\multicolumn
{
3
}{
c
}{
X25519 over
\Z
and list of
\Z
}
\\
\hline
...
...
@@ -80,12 +105,12 @@ We provide below the location of the most important definitions and lemmas of ou
\subsubsection
{
Lemmas and Theorems
}
~
\begin{table}
[h]
\begin{tabular}
{
l | l | l
}
Definition
&
File
&
Description
\\
\hline
\end{tabular}
\end{table}
%
\begin{table}[h]
%
\begin{tabular}{ l | l | l }
%
Definition & File & Description \\
%
\hline
%
\end{tabular}
%
\end{table}
% \subsection{Files}
%
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment