fix on / in curves

parent 14db2cb4
 ... ... @@ -402,7 +402,7 @@ We define the basic operations ($+, -, \times$) with their respective neutral elements ($0, 1$) and prove \lref{lemma:Zmodp_field}. \begin{lemma} \label{lemma:Zmodp_field} $\F{p}$ is a commutative field. $\F{p}$ is a field. \end{lemma} For $a = 486662$, by using the Legendre symbol we prove that $a^2 - 4$ and $2$ are not squares in $\F{p}$. ... ... @@ -452,8 +452,8 @@ For all $x \in \F{p}$, we can compute $x^3 + ax^2 + x$. Using \lref{lemma:square we can find a $y$ such that $(x,y)$ is either on the curve or on the quadratic twist: \begin{lemma} \label{lemma:curve-or-twist} For all $x \in \F{p}$, there exists a point $P$ over $M_{486662,1}(\F{p})$ or over $M_{486662,2}(\F{p})$ such that the \xcoord of $P$ is $x$. For all $x \in \F{p}$, there exists a point $P$ in $M_{486662,1}(\F{p})$ or in $M_{486662,2}(\F{p})$ such that the \xcoord of $P$ is $x$. \end{lemma} \begin{lstlisting}[language=Coq] Theorem x_is_on_curve_or_twist: ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!