Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Benoit Viguier
coq-verif-tweetnacl
Commits
78b21d53
Commit
78b21d53
authored
Oct 01, 2019
by
Freek Wiedijk
Browse files
Merge branch 'master' of gitlab.science.ru.nl:benoit/tweetnacl
parents
34254bcc
63d0abb8
Changes
1
Hide whitespace changes
Inline
Side-by-side
paper/5_highlevel.tex
View file @
78b21d53
...
...
@@ -402,7 +402,7 @@ We define the basic operations ($+, -, \times$) with their respective neutral
elements (
$
0
,
1
$
) and prove
\lref
{
lemma:Zmodp
_
field
}
.
\begin{lemma}
\label
{
lemma:Zmodp
_
field
}
$
\F
{
p
}$
is a
commutative
field.
$
\F
{
p
}$
is a field.
\end{lemma}
For
$
a
=
486662
$
, by using the Legendre symbol we prove that
$
a
^
2
-
4
$
and
$
2
$
are not squares in
$
\F
{
p
}$
.
...
...
@@ -452,8 +452,8 @@ For all $x \in \F{p}$, we can compute $x^3 + ax^2 + x$. Using \lref{lemma:square
we can find a
$
y
$
such that
$
(
x,y
)
$
is either on the curve or on the quadratic twist:
\begin{lemma}
\label
{
lemma:curve-or-twist
}
For all
$
x
\in
\F
{
p
}$
, there exists a point
$
P
$
over
$
M
_{
486662
,
1
}
(
\F
{
p
}
)
$
or
over
$
M
_{
486662
,
2
}
(
\F
{
p
}
)
$
such that the
\xcoord
of
$
P
$
is
$
x
$
.
For all
$
x
\in
\F
{
p
}$
, there exists a point
$
P
$
in
$
M
_{
486662
,
1
}
(
\F
{
p
}
)
$
or
in
$
M
_{
486662
,
2
}
(
\F
{
p
}
)
$
such that the
\xcoord
of
$
P
$
is
$
x
$
.
\end{lemma}
\begin{lstlisting}
[language=Coq]
Theorem x
_
is
_
on
_
curve
_
or
_
twist:
...
...
Write
Preview
Supports
Markdown
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment