newfold.icl 12 KB
Newer Older
1
2
3
4
implementation module newfold

// $Id$

5
import extract
6
import trace
7
import spine
8
import rule
9
10
11
import dnc
import graph
import basic
12
13
import StdEnv

14
15
/*

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
newfold.lit - New folding function
==================================

Description
-----------

This module defines one function, `fullfold'.   It  derives  a  function
defintion  from  a  trace, by first searching and folding autorecursion,
and searching the remainder of the trace for introduced recursion.

------------------------------------------------------------

Includes
--------

>   %include "dnc.lit"

>   %include "../src/basic.lit"
>   %include "../src/pfun.lit"
>   %include "../src/graph.lit"
>   %include "../src/rule.lit"
>   %include "../src/spine.lit"
>   %include "trace.lit"
>   %include "extract.lit"

------------------------------------------------------------

Interface
---------

Exported identifiers:

>   %export
>       fullfold ||  Full folding function
>       tracer   ||  Debugging
> ||    extract  ||  Fold a trace and extract new functions
> ||    etracer  ||  Debugging

------------------------------------------------------------

Deprecated type
---------------

>   tracer * ** ***
>   ==  (   (rgraph * **->(*,[**])) ->
>           * ->
>           trace * ** *** ->
>           (bool,([bool],[rule * **],[rgraph * **]))
>       ) ->
>       (rgraph * **->(*,[**])) ->
>       * ->
>       trace * ** *** ->
>       (bool,([bool],[rule * **],[rgraph * **]))

Implementation
--------------

`Fullfold foldarea fnsymbol  trace'  folds  the  trace.   It  returns  a
resulting  list  of  rewrite  rules  and  rooted  graphs  for  which new
functions have to be introduced.

First, an attempt is made to fold to the right hand side of the  initial
rewrite  rule  (autorecursion),  or  residues of the right hand side for
which no instantiation was necessary.  If any tip of the  trace  can  be
folded, this is done.

The remaining subtraces of the trace (which is possibly the whole trace)
are folded in their own right.  Introduced recursion is  applied  if  it
occurs within any subtrace.
85
86
87
88
89
90
91
92
*/

fullfold ::
    (Etracer sym var pvar)
    ((Rgraph sym var)->(sym,[var]))
    sym
    (Trace sym var pvar)
 -> ([Bool],[Rule sym var],[Rgraph sym var])
93
94
95
 |  == sym
 &  == var
 &  == pvar
96
97
98
99
100
101

fullfold trc foldarea fnsymbol trace
| recursive
  = recurseresult
= newextract trc foldarea trace
  where (recursive,recurseresult) = recurse foldarea fnsymbol trace
102

103
/*
104
105
106
107
108
109
110
`Recurse foldarea fnsymbol trace' is a pair `(recursive,recurseresult)'.
`Recurseresult'  is  the derived function definition (strictness, rules,
and new areas), obtained by folding the trace.  `Recurse' tries to  fold
the areas in the trace to recursive function calls when at all possible.
The allowed patterns for the autorecursion are derived from the  top  of
the  trace.  If no recursive function call can be found, `recurseresult'
is `False'.
111
*/
112

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
recurse ::
    ((Rgraph sym var)->(sym,[var]))
    sym
 -> (Trace sym var pvar)
 -> (Bool,([Bool],[Rule sym var],[Rgraph sym var]))
 |  == sym
 &  == var
 &  == pvar

recurse foldarea fnsymbol
= f ([],[])
  where f (newhist,hist) (Trace stricts rule answer history (Reduce reductroot trace))
        | isEmpty pclosed && superset popen ropen
          = f (newhist`,newhist`) trace
            where rargs = arguments rule; rroot = ruleroot rule; rgraph = rulegraph rule
                  (pclosed,popen) = graphvars rgraph rargs
                  (_,ropen) = graphvars rgraph [rroot]
                  newhist` = [(rroot,rgraph):newhist]
        f (newhist,hist) (Trace stricts rule answer history (Annotate trace))
        | isEmpty pclosed && superset popen ropen
          = f (newhist`,hist) trace
            where rargs = arguments rule; rroot = ruleroot rule; rgraph = rulegraph rule
                  (pclosed,popen) = graphvars rgraph rargs
                  (_,ropen) = graphvars rgraph [rroot]
                  newhist` = [(rroot,rgraph):newhist]
        f (newhist,hist) (Trace stricts rule answer history transf)
        = foldtips foldarea (fnsymbol,arguments rule) (removeDup newhist`,removeDup hist) (Trace stricts rule answer history transf)
          where rroot = ruleroot rule; rgraph = rulegraph rule
                newhist` = [(rroot,rgraph):newhist]

143

144
/*
145
146
147
148
149
`Foldtips foldarea foldcont hist trace' folds all occurrences of (rooted
graphs  in  hist)  in the tips of the trace. It returns a list of rules,
which are the results  of  folding,  and  a  list  of  areas  for  which
functions  must  be  introduced. If no occurrences were found, Absent is
returned.
150
*/
151

152
153
154
155
156
157
158
159
160
161
162
163
164
foldtips ::
    ((Rgraph sym var)->(sym,[var]))
    (sym,[var])
 -> ([(var,Graph sym var)],[(var,Graph sym var)])
    (Trace sym var pvar)
 -> (Bool,([Bool],[Rule sym var],[Rgraph sym var]))
 |  == sym
 &  == var
 &  == pvar

foldtips foldarea foldcont
= ft
  where ft hist trace
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
        = case transf
          of Stop
              -> foldoptional exres (pair True o addstrict stricts) (actualfold deltanodes rnfnodes foldarea (==) foldcont (snd hist) rule)
                 where deltanodes = foldoptional [] getdeltanodes answer
                       rnfnodes = foldoptional [ruleroot rule] (const []) answer
             Instantiate yestrace notrace
              -> ft`` (ft hist yestrace) (ft hist notrace)
                 where ft`` (False,yessra) (False,nosra) = exres
                       ft`` (yesfound,(yesstricts,yesrules,yesareas)) (nofound,(nostricts,norules,noareas))
                       = (True,(stricts,yesrules++norules,yesareas++noareas))
             Reduce reductroot trace
              -> ft`` (ft (fst hist,fst hist) trace)
                 where ft`` (False,sra) = exres
                       ft`` (found,sra) = (True,sra)
             Annotate trace
              -> ft`` (ft hist trace)
                 where ft`` (False,sra) = exres
                       ft`` (found,sra) = (True,sra)
183
184
185
186
187
188
189
190
191
192
193
194
195
196
          where (Trace stricts rule answer history transf) = trace
                exres = (False,newextract noetrc foldarea trace)

addstrict stricts (rule,areas) = (stricts,[rule],areas)

noetrc trace area = id

pair x y = (x,y)

only :: [.elem] -> .elem
only [x] = x
only xs = abort "only: not a singleton list"

/*
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
------------------------------------------------------------------------

`Extract foldarea trace (rules,areas)' folds the trace,  creating  rules
which  are prepended to `rules' and areas for introduced functions which
are prepended to `areas'.

The use of `extract' is to derive rules for parts of a trace that aren't
already folded by the detection of either auto or introduced recursion.

The  accumulator  argument  is  for  efficiency reasons.  It is probably
clearer to drop it and instead apply `concat' at a higher level.

Introduced recursion may be detected inside the trace.  Since the  trace
is  in  practice a subtrace of another trace, introduced recursion might
exist to the supertrace.  This does not count, since it is not  possible
to fold the first occurrence of the termination history pattern which is
in the supertrace.
214
215
216
217
218
219
220
*/

:: Etracer sym var pvar :==
       (Trace sym var pvar)
       (Rgraph sym var)
       Bool
    -> Bool
221

222
223
224
225
226
227
228
229
230
231
232
233
newextract ::
    (Etracer sym var pvar)
    ((Rgraph sym var)->(sym,[var]))
    (Trace sym var pvar)
 -> ([Bool],[Rule sym var],[Rgraph sym var])
 |  == sym
 &  == var
 &  == pvar

newextract trc newname (Trace stricts rule answer history transf)
| recursive
  = (stricts,[recrule],recareas)
234
235
236
237
238
239
240
241
242
243
244
245
246
= case transf
  of Reduce reductroot trace
      -> newextract trc newname trace
     Annotate trace
      -> newextract trc newname trace
     Instantiate yestrace notrace
      -> (stricts,yesrules++norules,yesareas++noareas)
         where (yesstricts,yesrules,yesareas) = newextract trc newname yestrace
               (nostricts,norules,noareas) = newextract trc newname notrace
     Stop
      -> (stricts,[mkrule rargs rroot stoprgraph],stopareas)

  where (recursive,unsafearea)
247
248
249
250
251
252
253
254
255
        = if (isreduce transf)
             (foldoptional (False,undef) (findspinepart rule transf) answer)
             (False,abort "newextract: not a Reduce transformation")

        (recrule,recareas) = splitrule newname rnfnodes deltanodes rule unsafearea
        (stoprgraph,stopareas) = finishfold newname rnfnodes deltanodes rroot rgraph

        rargs = arguments rule; rroot = ruleroot rule; rgraph = rulegraph rule
        rnfnodes = foldoptional (cons rroot) (const id) answer (varlist rgraph rargs)
256

257
        deltanodes = foldoptional [] getdeltanodes answer
258

259
260
261
262
263
isreduce (Reduce reductroot trace) = True
isreduce transf = False


/*
264
265
266
267
268
269
`Findspinepart toprule rule spine (transformation,trace)' is a pair with
a  boolean  determining whether some instance of the `spine', determined
using `toprule', occurs in a residu of itself in `trace'.

The use of `findspinepart' is to detect introduced recursion in  `trace'
to its root.
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
*/

findspinepart :: (Rule sym var) (Transformation sym var pvar) (Spine sym var pvar) -> (Bool,Rgraph sym var) | == sym & == var & == pvar

findspinepart rule transf spine
= snd (foldspine pair stop stop force stop (const stop) partial (const stop) redex stop spine)
  where pair node (pattern,recursion)
        = (pattern`,recursion`)
          where pattern`
                = if def (updategraph node cnt pattern) pattern
                (def,cnt) = dnc (const "in findspinepart") graph node
                recursion`
                | findpattern (pattern`,node) (spinenodes spine) node transf
                  = (True,mkrgraph node pattern`)
                = recursion
        force _ res = res
        partial rule matching _ (pattern,recursion) = (extgraph` graph rule matching pattern,recursion)
        redex rule matching = (extgraph` graph rule matching emptygraph,norecursion)
        stop = (emptygraph,norecursion)
        norecursion = (False,abort "findspinepart: no part of spine found")
        graph = rulegraph rule

extgraph` sgraph rule
= extgraph sgraph rgraph (varlist rgraph (arguments rule))
  where rgraph = rulegraph rule
295

296
/*
297
298
299
300
301
302
303
`Findpattern pattern rule residuroot transformation  trace'  bepaalt  of
een instance van `pattern' voorkomt in een residu van `residuroot' in de
`trace'.

Omwille van optimalisatie worden, met  behulp  van  `transformation'  en
`rule',  alleen  nieuw  toegevoegde  nodes  na  een  rewrite in de trace
bekeken. De rest is toch niet veranderd.
304
*/
305

306
findpattern :: (Graph sym var2,var2) [var] var (Transformation sym var pvar) -> Bool | == sym & == var & == var2 & == pvar
307

308
309
310
findpattern pattern thespinenodes residuroot transf
| isMember residuroot thespinenodes
  = False       // Root of residu no longer in spine - must have come to RNF.
311

312
313
314
315
316
317
318
319
findpattern pattern thespinenodes residuroot (Reduce reductroot trace)
= fp (redirect residuroot) trace
  where fp residuroot (Trace stricts rule answer history transf)
         | or [isinstance pattern (graph,node) \\ node<-varlist graph [residuroot]]
           = True
             where graph = rulegraph rule
        fp residuroot trace = findpattern` pattern residuroot trace
        redirect = adjust (last thespinenodes) reductroot id
320

321
322
findpattern pattern thespinenodes residuroot (Instantiate yestrace notrace)
= findpattern` pattern residuroot yestrace || findpattern` pattern residuroot notrace
323

324
325
findpattern pattern thespinenodes residuroot (Annotate trace)
= findpattern` pattern residuroot trace
326

327
328
findpattern pattern thespinenodes residuroot Stop
= False
329
330


331
findpattern` :: (Graph sym var2,var2) var (Trace sym var pvar) -> Bool | == sym & == var & == var2 & == pvar
332

333
334
335
findpattern` pattern residuroot (Trace stricts rule answer history transf)
= findpattern pattern thespinenodes residuroot transf
  where thespinenodes = foldoptional [] spinenodes answer
336

337
/*
338
339
340
`Getdeltanodes spine' is the list of nodes in the spine  that  we  don't
want  to introduce new functions for because they contain a delta symbol
or a strict argument.
341
*/
342
343
344
345
346
347
348
349
350
351
352
353

getdeltanodes ::
    (Spine sym var pvar)
 -> [var]

getdeltanodes spine
= foldspine pair none (True,[]) force none (const none) partial (const none) redex none spine
  where pair node (forced,nodes) = if forced [node:nodes] nodes
        none = (False,[])
        force _ nodes = (True,nodes)
        partial _ _ _ nodes = (False,nodes)
        redex _ _ = none