BuiltinSyntax.icl 24.7 KB
Newer Older
Camil Staps's avatar
Camil Staps committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529
implementation module BuiltinSyntax

import StdList

from Data.Func import $
import Data.Maybe
import Text

import Cloogle

import CloogleDB

import Builtins

builtin_syntax :: [SyntaxEntry]
builtin_syntax =
	[ bs_case
	, bs_class
	, bs_code
	, bs_define_constant
	, bs_define_graph
	, bs_dotdot
	, bs_exists
	, bs_forall
	, bs_generic
	, bs_import
	, bs_infix
	, bs_instance
	, bs_lambda
	, bs_layout_rule
	, bs_let
	, bs_let_before
	, bs_list_expressions
	, bs_macro
	, bs_module
	, bs_newtype
	, bs_overloaded_type_variable
	, bs_otherwise
	, bs_pattern_named
	, bs_selection_array
	, bs_selection_array_unique
	, bs_selection_record
	, bs_selection_record_unique
	, bs_strict
	, bs_synonym
	, bs_synonym_abstract
	, bs_update_array
	, bs_update_record
	, bs_where_class
	, bs_where_instance
	, bs_where_local
	, bs_with
	, bs_zf
	]

EX :: String String -> SyntaxExample 
EX t c = {example=c, cleanjs_type=t, cleanjs_start=Nothing}
EXs :: String String String -> SyntaxExample
EXs t s c = {example=c, cleanjs_type=t, cleanjs_start=Just s}

bs_case =
	{ syntax_title         = "case expression"
	, syntax_patterns      = ["case", "of", "case of"]
	, syntax_code          = ["case ... of ..."]
	, syntax_description   = "Pattern match on an expression and do something depending on the alternative of the matching pattern."
	, syntax_doc_locations = [CLR 5 "3.4.2" "_Toc311798001"]
	, syntax_examples      =
		[ EXs "Function" "macro" "isJust m = case m of\n\tJust _ -> True\n\t_      -> False"
		]
	}

bs_class =
	{ syntax_title         = "class"
	, syntax_patterns      = ["class"]
	, syntax_code          =
		[ "class ... ... :: ..."
		, "class ... ... where ..."
		]
	, syntax_description   =
		"Classes are (sets of) overloaded functions. For classes with only one member function, a simplified syntax exists.\n\n" +
		"Types can instantiate classes with the {{`instance`}} keyword."
	, syntax_doc_locations = [CLR 8 "6.1" "_Toc311798056"]
	, syntax_examples      = map (EX "ClassDef")
		[ "class zero a :: a // one member" // TODO highlighting
		, "class Text s      // multiple members\nwhere\n\ttextSize :: !s -> Int\n\tconcat :: ![s] -> s\n\t// ..." // TODO highlighting
		]
	}

bs_code =
	{ syntax_title         = "ABC code"
	, syntax_patterns      = ["code", "inline", "code inline"]
	, syntax_code          = ["... = code [inline] { ... }"]
	, syntax_description   =
		"A code block with raw ABC instructions, which can be used for primitive functions like integer addition, for linking with C, bypassing the type system... welcome down the rabbit hole!\n\n" +
		"When `inline` is used, the function will be inlined when applied in a strict context."
	, syntax_doc_locations = [CLR 13 "11.2" "_Toc311798115"]
	, syntax_examples      = map (EX "Function") // TODO highlighting
		[ "add :: !Int !Int -> Int                   // Primitive function\nadd a b = code inline {\n\taddI\n}"
		, "sleep :: !Int !*World -> *(!Int, !*World) // Linking with C\nsleep n w = code {\n\tccall sleep \"I:I:A\"\n}"
		, "cast :: !.a -> .b                         // Bypassing the type system\ncast _ = code {\n\tno_op\n}"
		]
	}

bs_define_constant =
	{ syntax_title         = "graph definition"
	, syntax_patterns      = ["=:"]
	, syntax_code          = ["... =: ..."]
	, syntax_description   =
		"Defining constants with `=:` at the top level makes sure they are shared through out the program; hence, they are evaluated only once.\n\n" +
		"This is the default understanding of `=` in local scope.\n\n" +
		"The inverse is {{`=>`}}, which defines an identifier to be a constant function."
	, syntax_doc_locations = [CLR 5 "3.6" "_Toc311798007"]
	, syntax_examples      = [EXs "Function" "macro" "mylist =: [1..10000]"]
	}
bs_define_graph =
	{ syntax_title         = "constant function definition"
	, syntax_patterns      = ["=>"]
	, syntax_code          = ["... => ..."]
	, syntax_description   =
		"Defining constants with `=>` at the top level makes sure they are interpreted as constant functions; hence, they are evaluated every time they are needed.\n\n" +
		"This is the default understanding of `=` in global scope.\n\n" +
		"The inverse is {{`=:`}}, which defines an identifier to be a graph."
	, syntax_doc_locations = [CLR 5 "3.6" "_Toc311798007"]
	, syntax_examples      = [EXs "Function" "macro" "mylist => [1..10000]"]
	}

bs_dotdot =
	{ syntax_title         = "dotdot expression"
	, syntax_patterns      = ["[\\e..]", "[\\e..\e]", "[\\e,\\e..]", "[[\\e,\\e..\\e]", "dotdot", "dot-dot", ".."]
	, syntax_code          = ["[i..]", "[i..k]", "[i,j..]", "[i,j..k]"]
	, syntax_description   =
		"A shorthand for lists of enumerable types.\n\n" +
		"To use these expressions, you must import {{`StdEnum`}}. The underlying functions are defined in {{`_SystemEnum`}}."
	, syntax_doc_locations = [CLR 6 "4.2.1" "_Toc311798023"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "xs = [0..]     // 0, 1, 2, 3, ..."
		, "xs = [0,2..]   // 0, 2, 4, 6, ..."
		, "xs = [0..10]   // 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10"
		, "xs = [0,2..10] // 0, 2, 4, 6, 8, 10"
		]
	}

bs_exists =
	{ syntax_title         = "existential quantifier"
	, syntax_patterns      = ["E", "E.*"]
	, syntax_code          = [":: ... = E. ...: ..."]
	, syntax_description   = "Existential quantifiers make it possible to define (recursive) objects of the same type with different types of content."
	, syntax_doc_locations = [CLR 7 "5.1.3" "_Toc311798042"]
	, syntax_examples      = [EX "Function" ":: List = E.e: Cons e List | Nil\nStart = Cons 5 (Cons 'a' (Cons \"abc\" Nil))"] // TODO highlighting
	}

bs_forall =
	{ syntax_title         = "universal quantifier"
	, syntax_patterns      = ["A", "A.*"]
	, syntax_code          = ["A. ...:"]
	, syntax_description   = "Explicitly marks polymorphic type variables. Clean does not yet allow universal quantifiers on the topmost level."
	, syntax_doc_locations = [CLR 5 "3.7.4" "_Toc311798013"]
	, syntax_examples      =
		[ EX "Function" "hd :: A.a: [a] -> a           // Not yet allowed: A. on the topmost level"
		, EX "Function" "h :: (A.a: [a] -> Int) -> Int // The quantifier is needed to apply the function to both a [Int] and a [Char]\nh f = f [1..100] + f ['a'..'z']"
		, EX "TypeDef"  ":: T = C (A.a: a -> a)        // In a type"
		]
	}

bs_generic =
	{ syntax_title         = "generic function definition"
	, syntax_patterns      = ["generic", "derive", "of", "{|*|}"] // This * matches everything, which is intentional
	, syntax_code          = ["generic ... ... :: ...", "derive ... ..."]
	, syntax_description   = "With generics, a function can be defined once and derived for (almost) all possible types, to avoid very similar code snippets."
	, syntax_doc_locations = [CLR 9 "7.2" "_Toc311798069"]
	, syntax_examples      =
		[ EX  "Function"           "generic gEq a :: !a !a -> Bool        // The type of a generic function"
		, EXs "Function" "macro" $ "gEq{|Int|} x y = x == y               // Implementation of a generic\n" +
		  "gEq{|PAIR|} fx fy (PAIR x1 y1) (PAIR x2 y2) = fx x1 x2 && fy y1 y2" // TODO highlighting
		, EX  "Function"           "derive gEq []                         // Deriving the gEq generic for type []"
		, EXs "Function" "macro"   "gConsName{|CONS of d|} _ = d.gcd_name // Using type information"
		]
	}

bs_import =
	{ syntax_title         = "imports"
	, syntax_patterns      = ["import", "from", "qualified", "as", "=>", "code", "library"]
	, syntax_code          =
		[ "import [qualified] ... [as ...]"
		, "from ... import ..."
		, "import ... => qualified ..."
		, "import code from [library] ..."
		]
	, syntax_description   =
		"Imports code from other modules.\n\n" +
		"With the `from` keyword, one can achieve more granularity.\n\n" +
		"In case of name clashes, `qualified` can be used (undocumented).\n\n" +
		"Moreover, you can import from object files or windows DLLs."
	, syntax_doc_locations = [CLR 4 "2.5" "_Toc311797991"]
	, syntax_examples      = map (EX "Function")
		[ "import StdEnv                          // Import all code from the StdEnv definition module"
		, "from StdFunc import o                  // Import only the o function from StdFunc"
		, "import qualified Data.Map              // Import Data.Map such that functions are available as e.g. 'Data.Map'.get."
		, "import qualified Data.Map as M         // Import Data.Map such that functions are available as e.g. 'M'.get."
		, "import Control.Monad => qualified join // Import all code from Control.Monad except for join. join is imported qualified"
		, "import code from \"tty.\"                // Import functions from the object file matching 'Clean System Files/tty.*'"
		, "import code from library \"msvcrt\"      // Import functions from linked DLLs according to the msvcrt file in Clean System Files.\n" +
		  "                                       // The file should start with the DLL name (e.g. msvcrt) and followed by one line per function you want to link."
		]
	}

bs_infix =
	{ syntax_title         = "infix operator"
	, syntax_patterns      = ["infix", "infixl", "infixr"]
	, syntax_code          = ["infix[l,r] [...]"]
	, syntax_description   =
		"Defines a function with arity 2 that can be used in infix position.\n\n" +
		"The following number, if any, determines the precedence.\n\n" +
		"`infixl` and `infixr` indicate associativity."
	, syntax_doc_locations = [CLR 5 "3.7.2" "_Toc311798011"]
	, syntax_examples      =
		[ EX  "Function"         "(bitor) infixl 6 :: !Int !Int -> Int // Left-associative infix function with precedence 6"
		, EXs "Function" "macro" "(o) infixr 9                         // Infix macro\n(o) f g :== \\x -> f (g x)"
		, EX  "TypeDef"          ":: MyType = (:+:) infixl 6 Int Int   // Infix data constructor, can be used as (5 :+: 10)"
		]
	}

bs_instance =
	{ syntax_title         = "instance"
	, syntax_patterns      = ["instance"]
	, syntax_code          = ["instance ... ... where ..."]
	, syntax_description   = "Defines an instantiation of a {{class}} for a type."
	, syntax_doc_locations = [CLR 8 "6.1" "_Toc311798056"]
	, syntax_examples      = map (EX "Function")
		[ "instance zero Int\nwhere\n\tzero = 0"
		, "instance zero Real\nwhere\n\tzero = 0.0"
		]
	}

bs_lambda =
	{ syntax_title         = "lambda abstraction"
	, syntax_patterns      = ["lambda", "\\*", "->", "."]
	, syntax_code          = ["\\... -> ...", "\\... . ...", "\\... = ..."]
	, syntax_description   = "An anonymous, inline function."
	, syntax_doc_locations = [CLR 5 "3.4.1" "_Toc311798000"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "(o) f g = \\x -> f (g x)         // Simple lambda expression"
		, "swapall = map (\\(x,y) -> (y,x)) // Pattern matching in lambda arguments"
		, "mul     = \\x y -> x * y         // Multiple arguments (of course, it would be better to write `mul x y = x * y` or `mul = (*)`)"
		]
	}

bs_layout_rule =
	{ syntax_title         = "layout rule"
	, syntax_patterns      = [";", "{", "}"]
	, syntax_code          = ["...;", "{ ... }"]
	, syntax_description   =
		"Most Clean programs are written using the layout rule, which means that scopes are indicated with indent levels." +
		"The layout sensitive mode can be turned off by adding a semicolon `;` at the end of the {{module}} line." +
		"Then, scopes have to be indicated with `{ ... }` and definitions have to end with `;`."
	, syntax_doc_locations = [CLR 4 "2.3.3" "_Toc311797989"]
	, syntax_examples      = [EX "Module" $
		"module test;\n" +
		"import StdEnv;\n" +
		"Start :: [(Int,Int)];\n" +
		"Start = [(x,y) \\\\ x <- odds, y <- evens];\n" +
		"where\n" +
		"{\n" +
		"\todds  = [1,3..9];\n" +
		"\tevens = [0,2..8];\n" +
		"}"]
	}

bs_let =
	{ syntax_title         = "let expression"
	, syntax_patterns      = ["let", "in", "let in"]
	, syntax_code          = ["let ... in ..."]
	, syntax_description   = "An expression that introduces new scope."
	, syntax_doc_locations = [CLR 5 "3.5.1" "_Toc311798003"]
	, syntax_examples      =
		[ EXs "Function" "macro"    "fac n = let fs = [1:1:[(fs!!(i-1)) + (fs!!(i-2)) \\ i <- [2..]]] in fs !! n"
		, EXs "Function" "macrorhs" "let // Multi-line let expressions\n\tfunction args = body\n\tselector = expr\n\t// ...\nin expression"
		]
	}
bs_let_before =
	{ syntax_title         = "let before"
	, syntax_patterns      = ["#", "#!"]
	, syntax_code          = ["#  ... = ...", "#! ... = ..."]
	, syntax_description   = "A {{`let`}} expression that can be defined before a guard or function body, which eases the syntax of sequential actions."
	, syntax_doc_locations = [CLR 5 "3.5.4" "_Toc311798006"]
	, syntax_examples      =
		[ EX "Function" "readchars :: *File -> *([Char], *File)\nreadchars f\n# (ok,c,f) = freadc file\n| not ok   = ([], f)\n# (cs,f)   = readchars f\n= ([c:cs], f)"
		]
	}

bs_list_expressions =
	{ syntax_title         = "list expression"
	, syntax_patterns      = ["list", "[]", "[:]", ":", "[\\e:\\e]", "['*"]
	, syntax_code          = ["[]", "[...:...]", "[..., ..., ...]", "['...']"]
	, syntax_description   =
		"A list can be composed of individual elements or a head and a tail. Special syntax is available for creating `[{{Char}}]` lists.\n\n" +
		"See also {{dotdot}} expressions.\n\n" +
		"The colon is not an operator in Clean, because it must always be surrounded by `[` and `]`. It can therefore not be curried, flipped, etc."
	, syntax_doc_locations = [CLR 6 "4.2.1" "_Toc311798021"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "abc = ['a', 'b', 'c']     // Individual elements"
		, "abc = ['a':['b':['c':[]]] // Head and tail, ending with the empty list"
		, "abc = ['abc']             // Special syntax for [Char] lists"
		]
	}

bs_macro =
	{ syntax_title         = "macro"
	, syntax_patterns      = [":==", "macro"]
	, syntax_code          = ["... :== ..."]
	, syntax_description   =
		"A macro is a compile-time rewrite rule. It can be used for constants, inline subtitutions, renaming functions, conditional compilation, etc.\n\n" +
		"Macros can appear in patterns to match on constants."
	, syntax_doc_locations = [CLR 12 "10.3" "_Toc311798111"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "flip f a b :== f b a                    // Useful for currying"
		, "IF_INT_64_OR_32 int64 int32 :== int64   // Conditional compilation"
		, "(o) infixr 9                            // Function composition. Doing this at run-time would be slow\n(o) f g :== \\x -> f (g x)"
		]
	}

bs_module =
	{ syntax_title         = "module heading"
	, syntax_patterns      = ["module", "definition", "implementation", "system", "definition module", "implementation module", "system module"]
	, syntax_code          = ["[definition,implementation,system] module ..."]
	, syntax_description   = "The heading of a Clean file. Definition modules describe what things are exported (dcl files), implementation modules how they are implemented (icl files)."
	, syntax_doc_locations = [CLR 4 "2.2" "_Toc311797983"]
	, syntax_examples      = map (EX "Function")
		[ "definition module ..."
		, "definition module StdList     // Exported definitions of list functions"
		, "implementation module StdList // The implementations of the functions"
		, "module test                   // An implementation module without corresponding dcl"
		, "system module StdInt          // The definitions of a module that contains foreign code (see section 2.6 of the language report)"
		]
	}

bs_newtype =
	{ syntax_title         = "Newtype definition (experimental)"
	, syntax_patterns      = ["=:", "newtype"]
	, syntax_code          = [":: ... =: ... ..."]
	, syntax_description   = "A newtype is a type synonym at run-time but treated as a real type at compile-time.\n"
	                       + "This allows the creation of separate instances without overhead."
	, syntax_doc_locations = []
	, syntax_examples      =
		[ EX "TypeDef" ":: T =: T Int"
		, EX "TypeDef" ":: T a =: T a"
		]
	}

bs_overloaded_type_variable =
	{ syntax_title         = "Overloaded type variable"
	, syntax_patterns      = ["^", "a^"]
	, syntax_code          = ["... :: ...^"]
	, syntax_description   = "A pattern match on the type of a dynamic depending on the type of the function."
	, syntax_doc_locations = [CLR 10 "8.2.5" "_Toc311798087"]
	, syntax_examples      = [EX "Function" "unpack :: Dynamic -> Maybe a\nunpack (x :: a^) = Just x // Only values of type a\nunpack _         = Nothing"]
	}

bs_otherwise =
	{ syntax_title         = "otherwise"
	, syntax_patterns      = ["otherwise"]
	, syntax_code          = ["otherwise"]
	, syntax_description   = "The (optional) last alternative in a guard. It caches all other cases, and makes sure your program does not crash if none of the cases matches."
	, syntax_doc_locations = [CLR 5 "3.3" "_Toc311797998"]
	, syntax_examples      =
		[ EXs "Function" "macrorhs" "| otherwise = ..."
		, EXs "Function" "macro"    "sign :: !Int -> Int\nsign n\n| n  < 0    = -1 // Negative number\n| n == 0    =  0 // Zero\n| otherwise =  1 // Must be positive"
		]
	}

bs_pattern_named =
	{ syntax_title         = "named pattern match"
	, syntax_patterns      = ["=:"]
	, syntax_code          = ["...=:(...)"]
	, syntax_description   = "Give a name to the expression of a pattern to be able to use the whole expression without creating new graphs."
	, syntax_doc_locations = [CLR 5 "3.2" "_Toc311797997"]
	, syntax_examples      =
		[ EXs "Function" "macro" "isJustU e=:(Just _) = (True, e) // On an ADT"
		, EX  "Function"         ":: Position = {px :: Int, py :: Int}\ngetx p=:{px} = (px, p) // On a record; this has type :: Position -> (Int, Position)"
		]
	}

bs_selection_array =
	{ syntax_title         = "array selection"
	, syntax_patterns      = [".[]", ".[\\e]", ".[,*]", ".[\\e,*]"]
	, syntax_code          = [".[i]", ".[i,j,...]"]
	, syntax_description   = "Select an element from a (possibly multidimensional) array. The indexes must have the type {{`Int`}}."
	, syntax_doc_locations = [CLR 6 "4.4.1" "_Toc311798033"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "five = {1,2,3,4,5,6,7,8,9,10}.[4]    // Arrays are zero-indexed"
		, "five = {{1,2},{3,4,5},{6,7,8}}.[1,2] // This is equivalent to (...).[1].[2]"
		]
	}
bs_selection_array_unique =
	{ syntax_title         = "unique array selection"
	, syntax_patterns      = ["![]", "![\\e]", "![,*]", "![\\e,*]"]
	, syntax_code          = ["![i]", "![i,j,...]"]
	, syntax_description   = "Select an element from a (possibly multidimensional, possibly unique) array and return both the element and the array. The indexes must have the type {{`Int`}}."
	, syntax_doc_locations = [CLR 6 "4.4.1" "_Toc311798033"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "(five,arr) = {1,2,3,4,5,6,7,8,9,10}![4]"
		, "(five,arr) = {{1,2},{3,4,5},{6,7,8}}![1,2]"
		]
	}
bs_selection_record =
	{ syntax_title         = "record selection"
	, syntax_patterns      = ["."]
	, syntax_code          = ["."]
	, syntax_description   = "Select a field from a (possibly multilevel) record."
	, syntax_doc_locations = [CLR 7 "5.2.1" "_Toc311798050"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "five = {px=5, py=10}.px"
		, "five = {pxy={px=5, py=10}, pz=2}.pxy.px"
		, "five = {px=5, py=10}.Position.px // If multiple records have a field px, the type name can be used for disambiguation"
		]
	}
bs_selection_record_unique =
	{ syntax_title         = "unique record selection"
	, syntax_patterns      = ["!"]
	, syntax_code          = ["!"]
	, syntax_description   = "Select a field from a (possibly multilevel, possibly unique) record and return both the field data and the record."
	, syntax_doc_locations = [CLR 7 "5.2.1" "_Toc311798050"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "(five,rec) = {px=5, py=10}!px"
		, "(five,rec) = {pxy={px=5, py=10}, pz=2}!pxy.px // Only the first field should have the exclamation mark"
		, "(five,rec) = {px=5, py=10}!Position.px // If multiple records have a field px, the type name can be used for disambiguation\n" +
		  "                                       // The language report is erroneous here. It is !Position.px, not .Position!px."
		]
	}

bs_strict =
	{ syntax_title         = "strictness annotation"
	, syntax_patterns      = ["strict", "!"]
	, syntax_code          = ["!"]
	, syntax_description   = "Override the lazy evaluation strategy: the argument must be evaluated to head normal form before the function is entered."
	, syntax_doc_locations = [CLR 5 "3.7.5" "_Toc311798014", CLR 12 "10" "_Toc311798103"]
	, syntax_examples      = [EX "Function" "acker :: !Int !Int -> Int"]
	}

bs_synonym =
	{ syntax_title         = "synonym type definition"
	, syntax_patterns      = ["synonym", ":=="]
	, syntax_code          = [":: ... :== ..."]
	, syntax_description   = "Defines a new type name for an existing type."
	, syntax_doc_locations = [CLR 7 "5.3" "_Toc311798052"]
	, syntax_examples      = [EX "TypeDef" ":: String :== {#Char}"]
	}
bs_synonym_abstract =
	{ syntax_title         = "abstract synonym type definition"
	, syntax_patterns      = ["synonym", ":=="]
	, syntax_code          = [":: ... (:== ...)"]
	, syntax_description   = "Defines a new type name for an existing type, while the type behaves as an abstract type for the programmer. This allows compiler optimisations on abstract types."
	, syntax_doc_locations = [CLR 7 "5.4.1" "_Toc311798054"]
	, syntax_examples      = [EX "TypeDef" ":: Stack a (:== [a])"]
	}

bs_update_array =
	{ syntax_title         = "array update"
	, syntax_patterns      = ["&", "{*&*[\\e]*=*}"]
	, syntax_code          =
		[ "{ a & [i]=x, [j]=y, ... } // Updates a by setting index i to x, j to y, ..."
		, "# a & [i]=x, [j]=y, ...   // Same as # a = {a & [i]=x, [j]=y, ...}" // See https://clean.cs.ru.nl/Clean_2.3
		]
	, syntax_description   = "Updates an array by creating a copy and replacing one or more elements."
	, syntax_doc_locations = [CLR 6 "4.4.1" "_Toc311798032"]
	, syntax_examples      = []
	}
bs_update_record =
	{ syntax_title         = "record update"
	, syntax_patterns      = ["&", "{*&*=*}"]
	, syntax_code          =
		[ "{ r & f1=x, f2=y, ... } // Updates r by setting f1 to x, f2 to y, ..."
		, "# r & f1=x, f2=y, ...   // Same as # r = {r & f1=x, f2=y, ...}" // See https://clean.cs.ru.nl/Clean_2.3
		]
	, syntax_description   = "Updates a record by creating a copy and replacing one or more fields."
	, syntax_doc_locations = [CLR 7 "5.2.1" "_Toc311798049"]
	, syntax_examples      = []
	}

bs_where_class =
	{ syntax_title         = "where"
	, syntax_patterns      = ["where"]
	, syntax_code          = ["where"]
	, syntax_description   = "Introduces the members of a {{`class`}} definition."
	, syntax_doc_locations = [CLR 8 "6.1"   "_Toc311798056"]
	, syntax_examples      = [EX "ClassDef" "class Arith a        // Class definition\nwhere\n\t(+) infixl 6 :: a a -> a\n\t(-) infixl 6 :: a a -> a"] // TODO highlighting
	}
bs_where_instance =
	{ syntax_title         = "where"
	, syntax_patterns      = ["where"]
	, syntax_code          = ["where"]
	, syntax_description   = "Introduces the implementation of an {{`instance`}}."
	, syntax_doc_locations = [CLR 8 "6.1"   "_Toc311798056"]
	, syntax_examples      = [EX "Function" "instance Arith Int   // Instance definition\nwhere\n\t(+) x y = // ...\n\t(-) x y = // ..."]
	}
bs_where_local =
	{ syntax_title         = "where"
	, syntax_patterns      = ["where"]
	, syntax_code          = ["where"]
	, syntax_description   = "Introduces local definitions. For guard-local definitions, see {{`with`}}."
	, syntax_doc_locations = [CLR 5 "3.5.2" "_Toc311798004"]
	, syntax_examples      = [EXs "Function" "macro" "primes = sieve [2..] // Local definitions\nwhere\n\tsieve [pr:r] = [pr:sieve (filter pr r)]"]
	}

bs_with =
	{ syntax_title         = "with"
	, syntax_patterns      = ["with"]
	, syntax_code          = ["with"]
	, syntax_description   = "Introduces guard-local definitions. For function-local definitions, see {{`where`}}."
	, syntax_doc_locations = [CLR 5 "3.5.3" "_Toc311798005"]
	, syntax_examples      = [EXs "Function" "macro" "f x y\n| guard1 = alt1\n\twith local = expr1\n| guard2 = alt2\n\twith local = expr2"]
	}

bs_zf =
	{ syntax_title         = "list comprehension"
	, syntax_patterns      = ["ZF-expression", "ZF", "zf", "comprehension", "<-", "<|-", "<-:", "\\\\", ",", "&", "|"]
	, syntax_code          = ["[... \\\\ ... <- ...]"]
	, syntax_description   = "Constructs a list composed of elements drawn from other lists or arrays."
	, syntax_doc_locations = [CLR 6 "4.2.1" "_Toc311798024"]
	, syntax_examples      = map (EXs "Function" "macro")
		[ "cartesian    = [(x,y) \\\\ x <- [1,2,3], y <- [10,20]] // Cartesian product: (1,10), (1,20), (2,10), (2,20), (3,10), (3,20)"
		, "zip xs ys    = [(x,y) \\\\ x <- xs & y <- ys]          // Pairwise zip through the lists"
		, "filter f xs  = [x \\\\ x <- xs | f x]                  // Guard to add conditions"
		, "catMaybes ms = [x \\\\ Just x <- ms]                   // Pattern matching in the selector"
		, "triangle     = [(x,y) \\\\ x <- [1,2,3], y <- [1..x]]  // Reusing x in the next generator: (1,1), (2,1), (2,2), (3,1), (3,2), (3,3)"
		, "arrToList a  = [x \\\\ x <-: a]                        // <-: for arrays"
		, "castList xs  = [|x \\\\ x <|- xs]                      // The two pipe characters make both xs and the result overloaded lists"
		]
	}