Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in
Toggle navigation
Menu
Open sidebar
Marc van Wanrooij
panda
Commits
60313847
Commit
60313847
authored
Feb 13, 2016
by
Marc van Wanrooij
Browse files
no message
parent
c3eab578
Changes
6
Hide whitespace changes
Inline
Side-by-side
DoingBayesianDataAnalysis/FilConJags.m
View file @
60313847
function
FilConJags
f
unction
FilConJags
% FILCONJAGS
%
% Filtration-condensation experiment
...
...
NIRS/nirs_av_figure5_onesubject.m
View file @
60313847
...
...
@@ -17,7 +17,7 @@ end
Txt
=
Txt
(
2
:
end
,:);
figure
(
2
)
clf
subj
=
1
7
;
subj
=
1
;
sel
=
nmbr
==
subj
;
fnames
=
{
d
(
sel
)
.
name
};
nfiles
=
numel
(
fnames
);
...
...
@@ -144,7 +144,7 @@ on = on(1:2:end);
stim
=
nirs
.
event
.
stim
;
stim
=
stim
(
1
:
2
:
end
);
ustim
=
unique
(
stim
);
% disp('===================')
for
chanIdx
=
chan
y
=
S
(:,
chanIdx
);
...
...
@@ -164,8 +164,13 @@ for chanIdx = chan
x
=
HDR
'
;
y
=
S
(:,
chanIdx
);
b
=
glmfit
(
x
,
y
,
'normal'
);
% A AV V
[
b
,
~
,
stats
]
=
glmfit
(
x
,
y
,
'normal'
);
% A AV V
b
stats
.
t
>
0
stats
.
t
stats
.
p
b
(
1
)
=
0
;
figure
(
2
)
yfit
=
glmval
(
b
,
x
,
'identity'
);
...
...
@@ -183,7 +188,7 @@ x = HDR';
end
% keyboard
subplot
(
121
)
ax
=
axis
;
for
ii
=
1
:
numel
(
on
)
...
...
@@ -239,7 +244,7 @@ legend('Visual','Audiovisual','Auditory','Location','SE');
pa_datadir
;
print
(
'-depsc'
,
'-painters'
,[
mfilename
'HbO2'
]);
pause
%% HHB
close
all
% Load mat files
...
...
@@ -258,7 +263,7 @@ end
Txt
=
Txt
(
2
:
end
,:);
figure
(
2
)
clf
sel
=
nmbr
==
17
;
sel
=
nmbr
==
subj
;
fnames
=
{
d
(
sel
)
.
name
};
nfiles
=
numel
(
fnames
);
...
...
@@ -391,9 +396,15 @@ ustim = unique(stim);
for
chanIdx
=
1
x
=
HDR
'
;
y
=
S
(:,
chanIdx
);
b
=
glmfit
(
x
,
y
,
'normal'
);
% A AV V
[
b
,
~
,
stats
]
=
glmfit
(
x
,
y
,
'normal'
);
% A AV V
offset
=
b
(
1
);
b
(
1
)
=
0
;
b
stats
.
t
<
0
stats
.
t
stats
.
p
figure
(
2
)
yfit
=
glmval
(
b
,
x
,
'identity'
);
yfit
(
isnan
(
y
))
=
NaN
;
...
...
NIRS/nirs_av_figure6_grandaverage.m
View file @
60313847
% function nirs_av_grandaverage
% determine grand average
% signals are obtained from
%
clear all
clear
all
close
all
% Load mat files
cd
(
'/Users/marcw/DATA/NIRS/OXY3_v14112014'
);
%#ok<*UNRCH> % contains all relevant data files
...
...
@@ -26,159 +26,186 @@ DOXYA = [];
DOXYV
=
[];
DOXYAV
=
[];
for
ii
=
1
:(
nnmbr
-
5
)
sel
=
nmbr
==
unmbr
(
ii
);
fnames
=
{
d
(
sel
)
.
name
};
nfiles
=
numel
(
fnames
);
disp
(
ii
)
disp
(
fnames
)
S
=
[];
So
=
[];
T
=
[];
M
=
[];
E
=
[];
for
jj
=
1
:
nfiles
load
(
fnames
{
jj
})
S
=
[
S
;
nirs
.
signal
];
%#ok<*AGROW>
So
=
[
So
;
nirs
.
deepchan
];
%#ok<*AGROW>
% S = [S;pa_zscore(nirs.signal)]; %#ok<*AGROW>
% So = [So;pa_zscore(nirs.deepchan)]; %#ok<*AGROW>
%% add timings, continuous
if
~
isempty
(
E
)
e
=
T
(
end
)
*
nirs
.
Fs
;
t
=
T
(
end
);
T
=
[
T
;
nirs
.
time
+
t
];
E
=
[
E
[
nirs
.
event
.
sample
]
+
e
];
else
T
=
[
T
;
nirs
.
time
];
E
=
[
E
[
nirs
.
event
.
sample
]];
end
fname
=
fnames
{
jj
};
fname
=
fname
(
5
:
end
-
4
);
sel
=
strcmpi
(
fname
,
Txt
(:,
1
));
%% Check for interleaved blocks
modal
=
Txt
(
sel
,
5
);
if
strncmp
(
modal
,
'Random'
,
5
);
M
=
[
M
{
nirs
.
event
.
stim
}];
elseif
strncmp
(
modal
,
'Audiovisual'
,
11
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'AV'
;
end
M
=
[
M
a
];
elseif
strncmp
(
modal
,
'Auditory'
,
8
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'A'
;
end
M
=
[
M
a
];
elseif
strncmp
(
modal
,
'Visual'
,
6
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'V'
;
end
M
=
[
M
a
];
else
M
=
[
M
{
nirs
.
event
.
stim
}];
end
end
S
=
pa_zscore
(
S
);
% S = pa_zscore(So);
disp
(
'=============='
)
sel
=
nmbr
==
unmbr
(
ii
);
fnames
=
{
d
(
sel
)
.
name
};
nfiles
=
numel
(
fnames
);
disp
(
ii
)
disp
(
fnames
)
S
=
[];
So
=
[];
T
=
[];
M
=
[];
E
=
[];
for
jj
=
1
:
nfiles
load
(
fnames
{
jj
})
sci
=
nirs
.
sci
;
sel
=
sci
>=
0.9
;
% s = nirs.signal(:,sel);
s
=
nirs
.
signal
;
% tmp = NaN(size(s(:,~sel)));
%% Block average
clear
N
N
.
event
.
sample
=
E
'
;
N
.
event
.
stim
=
M
;
N
.
Fs
=
nirs
.
Fs
;
N
.
fsdown
=
nirs
.
fsdown
;
% s(:,~sel) = tmp;
figure
(
1
)
clf
nchan
=
size
(
S
,
2
);
mod
=
{
'A'
;
'V'
;
'AV'
};
k
=
0
;
muA
=
NaN
(
nchan
,
405
);
muV
=
NaN
(
nchan
,
405
);
muAV
=
NaN
(
nchan
,
405
);
for
chanIdx
=
1
:
nchan
k
=
k
+
1
;
for
modIdx
=
1
:
3
mu
=
pa_nirs_blockavg
(
N
,
S
(:,
chanIdx
),
mod
{
modIdx
});
mu
=
mu
(:,
1
:
405
);
x
=
1
:
length
(
mu
);
x
=
x
/
10
;
whos
mu
switch
modIdx
case
1
muA
(
k
,:)
=
nanmean
(
mu
);
case
2
muV
(
k
,:)
=
nanmean
(
mu
);
case
3
muAV
(
k
,:)
=
nanmean
(
mu
);
end
figure
(
1
)
plot
(
x
,
mu
)
hold
on
end
S
=
[
S
;
s
];
%#ok<*AGROW>
%% add timings, continuous
if
~
isempty
(
E
)
e
=
T
(
end
)
*
nirs
.
Fs
;
t
=
T
(
end
);
T
=
[
T
;
nirs
.
time
+
t
];
E
=
[
E
[
nirs
.
event
.
sample
]
+
e
];
else
T
=
[
T
;
nirs
.
time
];
E
=
[
E
[
nirs
.
event
.
sample
]];
end
oxy
=
muA
(
2
:
2
:
end
,:);
OXYA
=
[
OXYA
;
oxy
];
oxy
=
muV
(
2
:
2
:
end
,:);
OXYV
=
[
OXYV
;
oxy
];
oxy
=
muAV
(
2
:
2
:
end
,:);
OXYAV
=
[
OXYAV
;
oxy
];
fname
=
fnames
{
jj
};
fname
=
fname
(
5
:
end
-
4
);
sel
=
strcmpi
(
fname
,
Txt
(:,
1
));
doxy
=
muA
(
1
:
2
:
end
,:);
DOXYA
=
[
DOXYA
;
doxy
];
doxy
=
muV
(
1
:
2
:
end
,:);
DOXYV
=
[
DOXYV
;
doxy
];
doxy
=
muAV
(
1
:
2
:
end
,:);
DOXYAV
=
[
DOXYAV
;
doxy
];
drawnow
%% Check for interleaved blocks
modal
=
Txt
(
sel
,
5
);
if
strncmp
(
modal
,
'Random'
,
5
);
M
=
[
M
{
nirs
.
event
.
stim
}];
elseif
strncmp
(
modal
,
'Audiovisual'
,
11
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'AV'
;
end
M
=
[
M
a
];
elseif
strncmp
(
modal
,
'Auditory'
,
8
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'A'
;
end
M
=
[
M
a
];
elseif
strncmp
(
modal
,
'Visual'
,
6
);
a
=
{
nirs
.
event
.
stim
};
for
kk
=
1
:
size
(
a
,
2
)
a
{
kk
}
=
'V'
;
end
M
=
[
M
a
];
else
M
=
[
M
{
nirs
.
event
.
stim
}];
end
end
S
=
pa_zscore
(
S
);
%% Block average
clear
N
N
.
event
.
sample
=
E
'
;
N
.
event
.
stim
=
M
;
N
.
Fs
=
nirs
.
Fs
;
N
.
fsdown
=
nirs
.
fsdown
;
figure
(
1
)
clf
nchan
=
size
(
S
,
2
);
mod
=
{
'A'
;
'V'
;
'AV'
};
k
=
0
;
muA
=
NaN
(
nchan
,
405
);
muV
=
NaN
(
nchan
,
405
);
muAV
=
NaN
(
nchan
,
405
);
sdA
=
NaN
(
nchan
,
405
);
sdV
=
NaN
(
nchan
,
405
);
sdAV
=
NaN
(
nchan
,
405
);
for
chanIdx
=
1
:
nchan
k
=
k
+
1
;
for
modIdx
=
1
:
3
try
mu
=
pa_nirs_blockavg
(
N
,
S
(:,
chanIdx
),
mod
{
modIdx
});
mu
=
mu
(:,
1
:
405
);
catch
mu
=
[];
end
x
=
1
:
length
(
mu
);
x
=
x
/
10
;
switch
modIdx
case
1
muA
(
k
,:)
=
nanmean
(
mu
);
sdA
(
k
,:)
=
nanstd
(
mu
)/
sqrt
(
size
(
mu
,
1
));
case
2
muV
(
k
,:)
=
nanmean
(
mu
);
sdV
(
k
,:)
=
nanstd
(
mu
)/
sqrt
(
size
(
mu
,
1
));
case
3
muAV
(
k
,:)
=
nanmean
(
mu
);
sdAV
(
k
,:)
=
nanstd
(
mu
)/
sqrt
(
size
(
mu
,
1
));
end
end
figure
(
1
)
clf
pa_errorpatch
(
x
,
muA
(
k
,:),
sdA
(
k
,:),
'b'
);
hold
on
pa_errorpatch
(
x
,
muV
(
k
,:),
sdV
(
k
,:),
'r'
);
pa_errorpatch
(
x
,
muAV
(
k
,:),
sdAV
(
k
,:),
'g'
);
legend
(
'A'
,
'V'
,
'AV'
)
axis
square
box
off
title
([
'File = '
num2str
(
ii
)
', channel = '
num2str
(
k
)]);
end
oxy
=
muA
(
2
:
2
:
end
,:);
OXYA
=
[
OXYA
;
oxy
];
oxy
=
muV
(
2
:
2
:
end
,:);
OXYV
=
[
OXYV
;
oxy
];
oxy
=
muAV
(
2
:
2
:
end
,:);
OXYAV
=
[
OXYAV
;
oxy
];
doxy
=
muA
(
1
:
2
:
end
,:);
DOXYA
=
[
DOXYA
;
doxy
];
doxy
=
muV
(
1
:
2
:
end
,:);
DOXYV
=
[
DOXYV
;
doxy
];
doxy
=
muAV
(
1
:
2
:
end
,:);
DOXYAV
=
[
DOXYAV
;
doxy
];
drawnow
end
%%
close
all
figure
(
666
)
subplot
(
221
)
oxy
=
OXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
sd
=
std
(
oxy
)
.
/
sqrt
(
n
);
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
sd
=
nanstd
(
oxy
)
.
/
sqrt
(
n
);
t
=
1
:
length
(
mu
);
t
=
t
/
10
;
patch
([
10
10
30
30
],[
-
2
2
2
-
2
],[
.
9
.
9
.
9
]);
hold
on
pa_errorpatch
(
t
,
mu
,
sd
,[
0
0
.
9
])
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
0
.
9
])
hold
on
oxy
=
OXYA
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
8
0
0
]);
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
8
0
0
]);
NCHAN
(
1
)
=
n
;
oxy
=
OXYAV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
0
.
7
0
]);
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
% n = size(oxy,1);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
.
7
0
]);
NCHAN
(
2
)
=
n
;
oxy
=
OXYA
+
OXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
)
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
7
.
7
.
7
]);
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
7
.
7
.
7
]);
NCHAN
(
3
)
=
n
;
axis
square
;
...
...
@@ -190,40 +217,45 @@ xlabel('Time re stimulus onset (s)');
ylabel
(
'\DeltaHbO_2'
);
title
(
'Normal-hearing, left & right AC)'
);
%%
subplot
(
223
)
oxy
=
DOXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
t
=
1
:
length
(
mu
);
t
=
t
/
10
;
patch
([
10
10
30
30
],[
-
2
2
2
-
2
],[
.
9
.
9
.
9
]);
hold
on
pa_errorpatch
(
t
,
mu
,
sd
,[
0
0
.
9
])
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
0
.
9
])
hold
on
oxy
=
DOXYA
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
8
0
0
]);
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
8
0
0
]);
NCHAN
(
4
)
=
n
;
oxy
=
DOXYAV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
0
.
7
0
]);
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
.
7
0
]);
NCHAN
(
5
)
=
n
;
oxy
=
DOXYA
+
DOXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
sel
=
all
(
isnan
(
oxy
'
));
n
=
sum
(
~
sel
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
7
.
7
.
7
]);
sd
=
nanstd
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
7
.
7
.
7
]);
NCHAN
(
6
)
=
n
;
axis
square
;
...
...
@@ -234,8 +266,7 @@ ylim([-1.4 0.2])
xlabel
(
'Time re stimulus onset (s)'
);
ylabel
(
'\DeltaHbR'
);
% pa_errorpatch(t,mu,sd,'r')
% pa_errorpatch(t,mu,2*sd,'r')
% plot(nanmean(OXYA))
% plot(nanmean(OXYAV))
...
...
@@ -271,7 +302,6 @@ for ii = (nnmbr-4):nnmbr
disp
(
ii
)
disp
(
fnames
)
S
=
[];
So
=
[];
T
=
[];
M
=
[];
E
=
[];
...
...
@@ -322,7 +352,6 @@ for ii = (nnmbr-4):nnmbr
end
end
S
=
pa_zscore
(
S
);
% So = pa_zscore(So);
%% Block average
...
...
@@ -338,10 +367,10 @@ for ii = (nnmbr-4):nnmbr
mod
=
{
'A'
;
'V'
;
'AV'
};
k
=
0
;
muA
=
NaN
(
nchan
,
406
);
muV
=
NaN
(
nchan
,
406
);
muAV
=
NaN
(
nchan
,
406
);
muV
=
NaN
(
nchan
,
406
);
muAV
=
NaN
(
nchan
,
406
);
for
chanIdx
=
1
:
nchan
k
=
k
+
1
;
for
modIdx
=
1
:
3
...
...
@@ -350,18 +379,20 @@ for ii = (nnmbr-4):nnmbr
x
=
x
/
10
;
switch
modIdx
case
1
muA
(
k
,:)
=
nanmean
(
mu
);
muA
(
k
,:)
=
nanmean
(
mu
);
case
2
muV
(
k
,:)
=
nanmean
(
mu
);
muV
(
k
,:)
=
nanmean
(
mu
);
case
3
muAV
(
k
,:)
=
nanmean
(
mu
);
muAV
(
k
,:)
=
nanmean
(
mu
);
end
figure
(
1
)
plot
(
x
,
mu
)
hold
on
end
figure
(
1
)
clf
plot
(
x
,
muA
(
k
,:))
hold
on
plot
(
x
,
muV
(
k
,:))
plot
(
x
,
muAV
(
k
,:))
legend
(
'A'
,
'V'
,
'AV'
)
end
oxy
=
muA
(
2
:
2
:
end
,:);
OXYA
=
[
OXYA
;
oxy
];
...
...
@@ -376,7 +407,7 @@ for ii = (nnmbr-4):nnmbr
DOXYV
=
[
DOXYV
;
doxy
];
doxy
=
muAV
(
1
:
2
:
end
,:);
DOXYAV
=
[
DOXYAV
;
doxy
];
drawnow
end
end
...
...
@@ -389,26 +420,26 @@ oxy = OXYA;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
t
=
1
:
length
(
mu
);
t
=
t
/
10
;
patch
([
10
10
30
30
],[
-
2
2
2
-
2
],[
.
9
.
9
.
9
]);
hold
on
pa_errorpatch
(
t
,
mu
,
sd
,[
0
0
.
9
])
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
0
.
9
])
hold
on
oxy
=
OXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
8
0
0
]);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
8
0
0
]);
oxy
=
OXYAV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
0
.
7
0
]);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
.
7
0
]);
...
...
@@ -416,8 +447,8 @@ oxy = OXYA+OXYV;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
7
.
7
.
7
]);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
7
.
7
.
7
]);
axis
square
;
...
...
@@ -434,34 +465,34 @@ oxy = DOXYA;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
t
=
1
:
length
(
mu
);
t
=
t
/
10
;
patch
([
10
10
30
30
],[
-
2
2
2
-
2
],[
.
9
.
9
.
9
]);
hold
on
pa_errorpatch
(
t
,
mu
,
sd
,[
0
0
.
9
])
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
0
0
.
9
])
hold
on
oxy
=
DOXYV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
sd
,[
.
8
0
0
]);
sd
=
nan
std
(
s
)
.
/
sqrt
(
n
);
pa_errorpatch
(
t
,
mu
,
2
*
sd
,[
.
8
0
0
]);
oxy
=
DOXYAV
;
mu
=
nanmean
(
oxy
);
n
=
size
(
oxy
,
1
);
s
=
bsxfun
(
@
minus
,
oxy
,
nanmean
(
oxy
,
2
));
sd
=
std
(
s
)
.
/
sqrt
(
n
);