Theory exercises

Program verification with types and logic (NWI-IMCO060)

Week 8

1. To guarantee safe concurrency, Rust uses the following traits:

e A type is Send if it is safe to send it to another thread.
o A type is Sync if it is safe to share between threads (T is Sync if and only if &T is Send).
This exercise is about the Send and Sync traits.
(a) Give an example of a type is both Send and Sync, and explain why.
(b) Give an example of a type is neither Send nor Sync, and explain why.
(c) Give an example of a type is Send, but not Sync, and explain why.

2. We consider the semantics of a simply-typed language with spawn and join similar to those
operations in Rust. The formal syntax of our language is as follows:

e€Expru=x|n|tid|Ax. e|ej ex|spavne]| joine
A € Type ::=nat | A} — Ay | joinhandle A

We let variables x € string, numerals n € N, and thread IDs tid € N.

Aside from the usual typing rules of the simply-typed lambda calculus with natural numbers,
the type system has the following typing rules for spawn and join:

'Fe: A I' F e : joinhandle A
I' - spawn e : joinhandle A ' joine: A

The intuitive semantics is that spawn e creates new thread that runs expression e, and returns
the thread’s join handle (represented as a thread ID). The construct join e will wait for the
spawned thread e to terminate. Since the type system is unrestricted (i.e., not substructural),
one can use a join handler zero or multiple times, possibly in different threads. The idea is that
each join will spin until the associated thread has terminated, and then obtains the return
value of that thread.

We let Val C Expr denote the subset of expressions that are values, 7.e., numerals n, thread IDs
tid, and functions Az. e. Configurations o are represented as lists of threads e; ...e,. The main
thread is the first element in the configuration, followed by all other threads in the order they
were spawned. Threads that have terminated (i.e., have reduced to a value) are kept in the

configuration. The small-step reduction o =; ¢’ says that thread 7 in configuration o can step
to configuration o

o(i) =k ((A\x. e) v) ctx k o(1) = k (spawn e) tid = length o ctx k
0= 0[i =k (subst x v e)] o= (o]i:=k tid]) ++ [€]

o(i) =k (join tid) o(tid) =e e ¢ Val ctx k

O =; O

o(i) =k (join tid) o(tid) =v v € Val ctx k
o= 0li:=kv]

We represent evaluation contexts k as functions from expressions to expressions. The judgment
ctx k says that k is a valid evaluation context. We use the notation o (i) to look up the ith
element of a list (i.e., the assertion o (i) = e means that the index 4 is within bounds of the list
o, and the value e is stored at position 7 in the list o), and the notation o [i := €] to overwrite
the 7th element of the list o with value e.

The step relation o0 = ¢’ non-deterministically lets a thread take a step:

o=;0 1 < length o
o= o

Our goal is to prove type safety, that is: If) - e : A, then safe [e]. Safety is defined as follows:
safe 0 2 Vo', (0 =* ') — Vi < length ¢’. (¢/(i) € Val) v (30”. 0/ =; 0”)
Here, =* is the reflexive-transitive closure of =.

(a) To prove type safety, we need to define a run-time typing judgment Fc o : A for
configurations. We then prove the following properties of the run-time typing judgment:
o Initialization: 0 - e : A implies g [€] : A
o Preservation: ez 0 : A and 0 = ¢’ implies Fcgg 0 : A
o Progress: e 0 1 A implies Vi < length 0. (0(i) € Val) vV (30’ 0 = 0”)
Explain how these three properties imply type safety.

(b) To define the run-time typing judgment . o @ A for configurations, we first define a run-
time typing judgment ¥ | T' e : A for expressions. Here, ¥ is a thread typing represented
as a list containing the types of all threads in the configuration. Give all inference rules for
the run-time typing judgment X | I' - e : A required to prove type safety.

(c) Give a definition of the run-time typing judgment ¢ o @ A for configurations and briefly
indicate why the three properties in Exercise [a] hold. You do not need to give a formal
proof of these properties.

(d) Our definition of type safety does not rule out configurations that are deadlocked i.e.,
configurations consisting of threads that spin indefinitely long via join to wait on each
other. Give an example of a configuration o that is deadlocked, but for which safe o holds.
Explain your answer.

(e) Does the type system rule out deadlocks? If yes, give an intuition why. If not, give an
example of a program that is well-typed, but that deadlocks.

