
Theory exercises

Program verification with types and logic (NWI-IMC060)

Week 10 and 11

1. In this exercise, we consider the representation predicate for linked lists and nested linked lists.
Linked lists are given by the following inductively-defined data type of our imperative object
language:

l ∈ llist A ::= lnil | lcons hd tl where hd ∈ A and tl ∈ ref (llist A)

We define representation predicates is_list l ~x and is_nested_list l ~~x that relate linked
lists l ∈ llist A to Coq lists ~x ∈ list A, respectively nested linked lists l ∈ llist (llist A)

to nested Coq lists ~~x ∈ list (list A):

is_list l ~x , match ~x with

| [] ⇒ l = lnil

| hd ~x2 ⇒ ∃tl l2. l = lcons hd tl ∗ tl 7→ l2 ∗ is_list l2 ~x2
end

is_nested_list l ~~x , match ~~x with

| [] ⇒ l = lnil

| ~x1 ~~x2 ⇒ ∃hd tl l2. l = lcons hd tl ∗ is_list hd ~x1 ∗
tl 7→ l2 ∗ is_nested_list l2 ~~x2

end

Consider the following program that deallocates a nested linked list and returns the number of
nested nodes that have been deallocated:

free_nested_list l , match l with
| lnil ⇒ 0
| lcons hd tl⇒ let n1 = free_list hd in

let n2 = free_nested_list (free tl) in
n1 + n2

end

Here, we use the function free_list whose specification is as follows:

[is_list l ~x] free_list l [n. n = length ~x]

(a) Give a precise specification of free_nested_list l in terms of a Hoare triple.
(b) Give a proof outline for your precise specification of free_nested_list l.

1

2. In this exercise, we consider the representation predicate for linked lists. Linked lists are given
by the following inductively-defined data type in our imperative object language:

l ∈ llist A ::= lnil | lcons hd tl where hd ∈ A and tl ∈ ref (llist A)

We define the representation predicates is_list v ~x and is_ref_list l ~x that relate linked
lists v ∈ llist A and references to linked lists l ∈ ref (llist A) of our imperative language to
a mathematical list ~x ∈ list A as follows:

is_list v ~x , match ~x with

| [] ⇒ v = lnil

| hd ~x2 ⇒ ∃tl. v = lcons hd tl ∗ is_ref_list tl ~x2
end

is_ref_list l ~x , ∃v. l 7→ v ∗ is_list v ~x

Consider the program of type ref (llist A) ∗ ref (llist A)→ () that appends references to
linked lists:

app_list x y , match !x with

| lnil ⇒ x← free y; ()
| lcons hd tl⇒ app_list tl y
end

(a) Give a specification of the append function app_list x y.
(b) Give a proof outline for your specification of the append function.

2

