
Theory exercises

Program verification with types and logic (NWI-IMC060)

Week 7

1. This question is about programming in Rust.
(a) Consider the type &mut Option<T>. Give the values of this type and describe the layout of

these values in memory. You should describe the layout in memory by drawing a figure
showing the pointer structure.

(b) Consider the following function:

pub fn take1<T> (o : &mut Option<T>) -> Option<T> {
match *o {
None => None,
Some(x) => Some(x)

}
}

Is the function take1 safe?
• If not, give a client of the function that causes a memory unsafety.
• If yes, explain why the function is safe and if the Rust type system accepts it.

(c) Consider the following function:

pub fn take2<T> (o : &mut Option<T>) -> Option<T> {
match *o {
None => None,
Some(x) => { *o = None; Some(x) }

}
}

Is the function take2 safe?
• If not, give a client of the function that causes a memory unsafety.
• If yes, explain why the function is safe and if the Rust type system accepts it.

2. This question is about programming in Rust.
(a) Explain the difference between Rust types that are Clone and Copy. Your answer should

make the following clear:
• Is every type that is Clone also Copy. If yes, explain why. If not, give a counterexample.
• Is every type that is Copy also Clone. If yes, explain why. If not, give a counterexample.

1



(b) Consider the following function:

fn swap1(v : &mut Vec<i32>, i : usize, j : usize) {
let x = v[i];
v[i] = v[j];
v[j] = x

}

(Here, usize is a large integer type that can represent all array indices.)
Does the Rust type system accept the function swap1? If yes, explain why. If not, explain
exactly where the Rust type checker will complain.

(c) Implement the function:

fn swap2<T : Clone>(v : &mut Vec<T>, i : usize, j : usize)

You should explain why the Rust type checker accepts your implementation.

3. This question is about programming in Rust.
(a) We have the type Vec<i32>, the type &Vec<i32>, and the type &mut Vec<i32>. Explain how

these types are represented in memory.
(b) Briefly explain which of the following operations you can do with the underlying vector via

each of the types Vec<i32>, the type &Vec<i32>, and the type &mut Vec<i32>:
1. Deallocate the vector and its elements.
2. Mutate the vector.
3. Obtain multiple aliases to the vector.

(c) Explain if the following program is accepted by the Rust compiler:
let v = vec![1,2,3];
let w = &v[1];
v.push(4);
println!("{}", *w);

If yes, explain why. If no, explain what the Rust compiler will say. Also explain whether
or not the program is safe.

2


