Exam Program verification with types and logic (IMC060)

14 June 2024

Additional materials (laptops, tablets, phones, calculators, or books) are not allowed.
The use of your own notes is not allowed.

This test consists of 6 questions.

You can obtain 90 points in total. Your final exam grade is determined by:

obtained points

final exam grade = 149 - %0

The division of points among the questions is:

Question: | (1| | [2[| B[| 4| | |5 | [6] | Total

Points: 21 11312 |14 | 15| 15 90

e Read the text and the questions carefully.

Write proofs, terms and types in this test according to the conventions introduced during the
course. Make sure to be very precise.
Make sure to motivate your answer to every question.

Good luck on your test!

Exam IMC060 14 June 2024 page 1 of 12

Question 1 (21 points)
In this exercise you will implement a type checker for a pure programming language, whose
syntax and type system are defined in Coq as follows:

Inductive ty := TBool | TNat | TFun (A B : ty).

Inductive expr :=
| ENat (n : nat)
| EVar (x : string)
| ELam (x : string) (A : ty) (e : expr)
| EApp (el e2 : expr).

Inductive subty : ty -> ty -> Prop :=
| subty_refl A : subty A A
| subty_bool_nat : subty TBool TNat
| subty_fun A1 A2 Bl B2 :
subty B1 Al >
subty A2 B2 ->
subty (TFun A1 A2) (TFun Bl B2).

Inductive typed : stringmap ty -> expr -> ty -> Prop :=
| Bool_false_typed Gamma :
typed Gamma (ENat 0) TBool
| Bool_true_typed Gamma :
typed Gamma (ENat 1) TBool
| Nat_typed Gamma n :
typed Gamma (ENat n) TNat
| Var_typed Gamma x A :
StringMap.lookup Gamma x = Some A ->
typed Gamma (EVar x) A
| Lam_typed Gamma x e A B :
typed (StringMap.insert x A Gamma) e B ->
typed Gamma (ELam x A e) (TFun A B)
| App_typed Gamma el e2 A B :
typed Gamma el (TFun A B) ->
typed Gamma e2 A ->
typed Gamma (EApp el e2) B
| Subsumption Gamma e A B :
subty A B >
typed Gamma e A ->
typed Gamma e B.

The key feature of this language is that it has a boolean and natural number type (TBool and
TNat), but only natural number literals (ENat n). The literals 0 and 1 can be used as booleans
and natural numbers. The subtyping relation (subty) and subsumption rule (Subsumption) can
be used to coerce expressions of boolean type into natural number type.

(a) [2 points] Explain why the subtyping relation for functions is not defined as:

| subty_fun A1 A2 Bl B2 :
subty A1 Bl -> (* WRONG *)
subty A2 B2 —>
subty (TFun A1 A2) (TFun Bl B2).

Exam IMC060 14 June 2024 page 2 of 12

Solution: The type A is the input of the function, so the direction of the subtyping is
reversed compared to the output B.

(b) [5 points] Our initial attempt to define a bool version of the subtyping relation is:

Fixpoint bsubty (A1 A2 : ty) : bool :=
match Al, A2 with
| TBool, TBool => true
| TNat, TNat => true
| TBool, TNat => true
| TFun A1 A2, TFun B1 B2 => bsubty Bl Al && bsubty A2 B2
| _, _ => false
end.

Explain why Coq does not accept this definition, and give an alternative definition that
will be accepted by Coq. You are recommended to introduce an auxiliary Fixpoint.

Solution: The call to bsubty B1 A1 is not structurally recursive. A valid alternative
definition is as follows:

Fixpoint bsubty_aux (ff : bool) (Al A2 : ty) : bool :=
match Al, A2 with
TBool, TBool => true
TNat, TNat => true
TBool, TNat => negb ff
TNat, TBool => ff
TFun A1 A2, TFun B1 B2 => bsubty_aux (negb ff) Al Bl && bsubty_aux ff A2 B2
_, _ => false
end.

Definition bsubty : ty -> ty -> bool := bsubty_aux false.

(c) [7 points] Give an implementation of the type checker:
Fixpoint type_check (Gamma : stringmap ty) (e : expr) : option ty :=
(* FILL OUT *)

Your type checker should satisfy the following correctness lemma:

Lemma type_check_correct Gamma e A :
typed Gamma e A <-> exists B, type_check Gamma e = Some B /\ subty B A.

You are recommended to use the usual operations on finite maps and the bsubty function
(even if you did not complete Question [1.b)).

Solution:

Fixpoint type_check (Gamma : stringmap ty) (e : expr) : option ty :=
match e with
| ENat (0 | 1) => Some TBool
| ENat _ => Some TNat
| EVar x => StringMap.lookup Gamma x
| ELam x A e =>

Exam IMC060 14 June 2024 page 3 of 12

match type_check (StringMap.insert x A Gamma) e with
| Some B => Some (TFun A B)
| None => None
end
| EApp el e2 =>
match type_check Gamma el, type_check Gamma e2 with
| Some (TFun A1 A2), Some B =>
if bsubty B Al then Some A2 else None
| _, _ => None
end
end.

(d) [2 points] Explain whether it is possible to define a type checker that satisfies:

Lemma type_check_correct_strong Gamma e A :
typed Gamma e A <-> type_check Gamma e = Some A.

Solution: This is impossible. Types are not unique, the expression ENat 0 has type
TBool and TNat. The theorem thus gives us type_check [1 (ENat 0) = Some TBool and
type_check [] (ENat 0) = Some TNat, hence TBool = TNat, which is contradictory.

(e) [5 points] We extend our language with an if-then-else construct:

Inductive expr :=
(* same as before *)
| EIf (el e2 e3 : expr).

Inductive typed : stringmap ty -> expr -> ty -> Prop :=
(* same as before *)
| If_typed Gamma el e2 e3 B :
typed Gamma el TBool ->
typed Gamma e2 B ->
typed Gamma e3 B ->
typed Gamma (EIf el e2 e3) B.

Give the additional Coq code that needs to be added to the type_check function (you do
not need to copy the entire prior code). Your new type_check function needs to satisfy the
lemma type_check_correct from Question

You are allowed to introduce an auxiliary function on ty. You are not required to give the
implementation of that function, but you should describe clearly its behavior in English.

Solution:

Fixpoint type_check (Gamma : stringmap ty) (e : expr) : option ty :=
match e with
(* same as before *)
| EIf el e2 e3 =>
match type_check Gamma el, type_check Gamma e2, type_check Gamma e3 with
| Some TBool, Some Al, Some A2 => join A1l A2
| _, _, _ => None

Exam IMC060 14 June 2024 page 4 of 12

end
end.

The function join A1 A2 computes the least supertype of A1 and A2, and returns None
if no such supertype exists.

Exam IMC060 14 June 2024 page 5 of 12

Question 2 (13 points)
Consider a small programming language, which, similar to Rust, has a panic expression that
safely terminates execution of the program:

vi=n|b (neN,beB)
Ou=+4|x|=
ex=x|v|letx=e; ines | e ®eg | panic

The semantics of the language is given using a small-step operational semantics. Its head
reduction relation =} and whole-program reduction relation = are inductively defined as:

eval_binop ® v1 12 = w €1 =p €2 ctx k

(let x =vine) =, substzve (v ©v2) =pw kei=key

Note that panic does not have a reduction rule!
Evaluation contexts are defined as follows:

Inductive ctx : (expr -> expr) -> Prop :=
| Let_ctx y €2 : ctx (fun x => ELet y x e2)
Op_r_ctx op el : ctx (EOp op el)
Op_l_ctx op v2 : ctx (fun x => EOp op x (EVal v2))
Id_ctx : ctx (fun x => x)

|
|
|
| Compose_ctx k1 k2 : ctx k1 -> ctx k2 -> ctx (fun x => k1 (k2 x)).

(a) [b points] Define a predicate safe : expr — Prop that describes whether an expression is
safe. Explain why your definition correctly captures safety.

Examples of safe expressions:

e panic

e 2 4+ panic

o (5 + true) + panic, due to right-to-left evaluation panic is executed before 5 + true
Examples of unsafe expressions:

e 5+ true
e panic + (5 + true), due to right-to-left evaluation 5 + true is executed before panic

Solution:

Definition safe (e : expr) :=
forall e’,
steps e e’ —>
(exists v, e’ = EVal v) \/
(exists k, ctx k /\ e’ = k EPanic) \/
(exists e’’, step e’ e’’).

(b) [3 points] Give the (Coq) type for an interpreter for this language. The interpreter should
given a expression be able to tell whether it safely results in a value, panics, or is unsafe.
You do not have to give the implementation of the interpreter.

Exam IMC060 14 June 2024 page 6 of 12

Solution:
Inductive res := Panic | Wrong | Res (v : val).
Fixpoint interp (e : expr) : res. := (k .. %).

(c) [6 points] Give the correctness lemma for your interpreter.

Solution: A possible solution is:

Lemma interp_correct e :
(forall v, interp e = Res v <-> steps e (EVal v)) /\
(interp e = Panic <-> exists k, ctx k /\ steps e (k EPanic)).

Note that this lemma uniquely specifies interp and we therefore do not need to add a
Wrong case. There are many other solutions that uniquely specify interp.

Exam IMC060 14 June 2024 page 7 of 12

Question 3 (12 points)
Consider a Rust library that provides the type Foo<T> with the following methods:

Foo::new(val : T) -> Foo<T>
Foo::replace(&self, val : T) -> T

The new method wraps a value into a Foo. The replace method allows one to replace the value
of a Foo via a shared reference: it “moves out” the old value, and “moves in” the new value. A
sample program that uses this library is as follows:
fn main() {

let x = Foo::new(10);

let r1 = &x;

let r2 = &x;

println! ("{}", r2.replace(12)); // Prints 10

println! ("{}", rl.replace(14)); // Prints 12
}

(a) [3 points] Consider the following additional method for Foo<T> that retrieves the value:
Foo::get(&self) -> T
Explain whether safety of Rust is preserved by adding the get method. If not, your

explanation should include a well-typed Rust program that uses the get method, but has a
memory error (e.g., use-after-free).

Solution: It is only safe if T is Copy. Particularly it is not safe if T is a vector:

let x = Foo::new(vec![10,11]);

let vl = (&x).get();

let v2 = (&x).get();

vl.push(12); // Reallocates the vector
println! ("{}", v2.get(1)); // Use-after-free

(b) [3 points] Consider the following additional method for Foo<T> that overwrites the value:
Foo::set(&self, value : T) -> ()
Explain whether safety of Rust is preserved by adding the set method. If not, your

explanation should include a well-typed Rust program that uses the get method, but has a
memory error (e.g., use-after-free).

Solution: This function is safe. It is the same as calling replace and dropping its
return value.

(c) [3 points] Explain whether Foo<T> could be Send. (Your answer is allowed to depend on
whether T is Send or Sync.)

Solution: The type Foo<T> is Send provided that T is Send. In case one has unique
ownership of a Foo<T>, there cannot be any shared references to it. Hence it can be
safely transferred to another thread without causing data races.

Exam IMC060 14 June 2024 page 8 of 12

(d) [3 points] Explain whether Foo<T> could be Sync. (Your answer is allowed to depend on
whether T is Send or Sync.)

Solution: The type Foo<T> cannot be Sync. If it was Sync, one could share &Foo<T>
between threads, and have racy calls to replace. Unless replace uses atomic operations
or performs some form of synchronization, such races would be unsafe.

Exam IMC060 14 June 2024 page 9 of 12

Question 4 (14 points)
We consider substructural typing for a programming language with references. Consider the
following semantic interpretation for the typing judgment:

['Fe: A=V ctx typed I' 7 = WP (subst_map @ €) [v. Av * True]
emp if ' =[]

ctx typed I 7 & . o
Fu. lookup ¥z = Somewv x Av x ctx_typed IV ¢ if ' = (z, A) :: TV

Here, ¥ ranges over finite maps from variables names to values, subst_map ¢ e is the parallel
substitution, and ctx_typed I' ¥ is the semantic context typing. Contexts I' are lists that associate
types to variable names (i.e., they can have multiple bindings for the same variable).

(a) [4 points] Explain whether the “weakening rule” holds in a type system with the above

semantic interpretation. Recall, the weakening rule is as follows:

I'e:B x ¢ dom T
r:AT'Fe:B

Solution: The weakening rule holds in this system. We can turn ctx_typed I" (z, A) :: ¢
into True * ctx_typed I' ¥, and then frame True into the True in the postcondition.

(b) [4 points] Explain whether the “contraction rule” holds in a type system with the above
semantic interpretation? Recall, the contraction rule is as follows:

v:Axz:ATFe:B x ¢ domT
r:ATkFe:B

Solution: The contraction rule does not hold in this system. The variable = : A in
the context provides unique ownership (of, for example, a reference) and therefore in
general not be duplicated.

(c) [6 points] State the “type safety” theorem for linear languages from week 12, and explain
which parts of this theorem do and do not hold for the above semantic interpretation.

Solution: The type safety theorem says: If) - e : A for a copy-type A, then

1. e does not have memory errors, i.e., use-after-free and double-free, and
2. e does not have memory leaks.

Using the weakening rule, we can ‘leak’ references, so property (2) does not hold.

Question 5 (15 points)
For each question you should explain your answer!

Exam IMC060 14 June 2024 page 10 of 12

(a) [3 points] State precisely the set of heaps described by Im. I — 1 Aly — m.

Solution: This assertion describes the heap consisting of a single location [(which
equals l2) containing 1. The conjunction ensures that [; and [y are the same, and the
existentially quantified value m equals 1.

(b) [3 points| State precisely the set of heaps described by [— 5 * (I — 10 — True).

Solution: This assertion describes the heaps that contain at least location [with value
5. That is because [— 10 —« True is logically equivalent to True, so the whole assertion
describes heaps that can be split into a part with location [and an arbitrary part.

(c) [3 points] State precisely the set of heaps described by I +— 5 x (I — 10 — False).

Solution: This assertion describes the empty set of heaps. The separating conjunction
ensures the heap can be split into two disjoint parts: one with exactly location [and
another part without location [. No heap without location [satisfies [— 10 —« False
because any such heap can be extended with location [, but none satisfies False.

(d) [3 points] Give a separation logic assertion that describes the heaps where all locations
have a value that is unequal to 10.

Solution: VI. [+ 10 * True — False. This assertion says that if the heap contains at
least a location [with value 10, we have a contradiction.

(e) [3 points] Give a program e that satisfies:
[Tk l—kxk—l]le[w w=/()]

(Recall that the separation logic assertion x = y is only satisfied when the heap is empty.)

Solution: Let e = free (freel); (). There is a reference to a reference, so we need to
free both. We assume that free returns the value of the reference that is freed.

Exam IMC060 14 June 2024 page 11 of 12

Question 6 (15 points)
Consider a Coq inductive type for binary trees and a function that computes the depth:
Inductive tree :=

| leaf : nat -> tree
| node : tree -> tree -> tree.

Fixpoint depth_coq (t : tree) : nat :=
match t with

| leaf _ => 0
| node t1 t2 => S (Nat.max (depth_coq t1) (depth_coq t2))
end.

And an imperative version of the depth function:

Definition depth :=
recclosure: "rec" "1" "k" "d" =>
match: !"1" with
InjL "n" =>
if: !"k" <: "d" then
l|kll <_ Ild|l ; ; VUnit

else VUnit

| InjR "node" =>
let: "11" := EFst "node" in
let: "1lr" := ESnd "node" in

llrecll II11II ||k|| (||d|| +: VNat 1) HA
"yrec" "1r" "k" ("d" +: VNat 1)
end.

(a) [4 points] Define a representation predicate is_tree [¢ in separation logic that states that
at location [there is a mutable tree that matches up with the inductive Coq tree t. The
type of is_tree should be loc — tree — sepProp. You can use either math or Coq syntax.
You are allowed to ignore/leave implicit coercions such as VNat and VRef.

Solution:

Fixpoint is_tree (1 : loc) (t : tree) : sepProp :=
match t with
| leaf v => 1 ~> VInjL (VNat v)
| node tl tr =>
Ex 11 1r,
1 ~> VInjR (VPair (VRef 11) (VRef 1r)) x*x
is_tree 11 tl x*x*
is_tree 1lr tr
end.

(b) [4 points] Our goal is to prove the following Hoare triple:
[is_tree [txk+> 0]depthl k O[w. w = () x is_tree [t * k — (depth_coq ?)]

To prove this Hoare triple by induction you need a strengthened version that provides a
sufficient induction hypothesis. Give the strengthened version of the Hoare triple.

Exam IMC060 14 June 2024 page 12 of 12

Solution:

w. w = ()*is_tree [tx*

[is_tree [t xk+> m]depthl k d k s mmax(d + depth_coq t)

[7 points| Give a proof outline for your strengthened version of the Hoare triple.

Solution:

depthl kd = [is tree [t+ ks m]
match !l with
linln = [l—inlnxk—m] t=1leafn
if 1k < d then
[l—=inlnxk—m*m <d]
k<d; ()
[l inln*xk—d]
[l —inl nxk— mmaxd]
else
[l—inlnxk—msxm >d]
0
[l inl n*k— mmaxd]
[l inl nxk— mmaxd]
[l inl nxk— mmax(d+ depth_coq t)]
| inr node = [l inr (I},1,) x is_tree [} t; x is_tree I, t, x k > m]
t = node t; t,, node = (I;,1,)
let Il = fstnode in Il =1,
let Ir = sndnode in Ir =1,
depth Il k (d + 1);
[w.w=()*l+inr (I},l,) *x is_tree I; t; * is_tree I, t, *
| k — mmax(d+1 + depth_coq ?;)]
depth Ir k (d+ 1)
[w. w=()*l+inr (I},],) x is_tree I; t; * is_tree I, t, *
| k — mmax(d+1 + depth_coq #;) max(d+1 4 depth_coq tr)}
[w.w=()*l+inr (I},],) x is_tree I; t; * is_tree I, t, *
| k — mmax(d + depth_coq t)]
[w. w= () *is_tree [t * k — mmax(d + depth_coq t)]

end
[w. w=()*is_tree [t * k — mmax(d + depth_coqt) |

End of the exam

