
Endterm Test Program verification with types and logic (IMC060)

17 June 2022

� Additional materials (laptops, tablets, phones, calculators, or books) are not allowed.
� The use of your own notes is not allowed.
� This test consists of 7 questions.
� You can obtain 100 points in total. Your final exam grade is determined by:

final exam grade ≜ min

(
10, 1 + 9 · obtained points

100− 23

)
� (Changes after the exam took place:) Since the exam turned out to be too long, Exer-
cise 4 has been turned into a bonus.

� The division of points among the questions is:

Question: 1 2 3 4 5 6 7 Total

Points: 9 13 12 23 15 13 15 100

� Read the text and the questions carefully.
� Write proofs, terms and types in this test according to the conventions introduced during the
course. Make sure to be very precise.

� Make sure to motivate your answer to every question.

Good luck on your test!

i

Endterm Test IMC060 17 June 2022 page 1 of 5

Question 1 (9 points)
For a type A we have the following notions of equality in Coq:

� eq : A -> A -> Prop

� eqb : A -> A -> bool

� dec : forall x1 x2 : A, { eq x1 x2 } + { ∼eq x1 x2 }.

This question is about these three notions of equality.

(a) [4 points] Explain the difference between eq and eqb. You should give the formal equiva-
lence between eq and eqb as a Lemma in Coq syntax.

(b) [2 points] Explain the type forall x1 x2 : A, { eq x1 x2 } + { ∼eq x1 x2 } of dec.

(c) [3 points] Define eqb in terms of dec. Explain how to prove the Lemma of Question 1.a for
your definition of eqb. You do not need to give a Coq proof script, but you should give a
clear description of how the proof is carried out.

Question 2 (13 points)
Consider the syntax and small-step semantics of a small language with an “either” construct.

Inductive val :=

| VBool : bool -> val

| VNat : nat -> val.

Inductive expr :=

| EVal : val -> expr

| EEither : expr -> expr -> expr

| EIf : expr -> expr -> expr -> expr.

Inductive head_step : expr -> expr -> Prop :=

| Either_head_step_l e1 e2 :

head_step (EEither e1 e2) e1

| Either_head_step_r e1 e2 :

head_step (EEither e1 e2) e2

| If_head_step_true e2 e3 :

head_step (EIf (EVal (VBool true)) e2 e3) e2

| If_head_step_false e2 e3 :

head_step (EIf (EVal (VBool false)) e2 e3) e3.

Inductive step : expr -> expr -> Prop :=

| do_head_step e e’ :

head_step e e’ -> step e e’

| If_step e1 e1’ e2 e3 :

step e1 e1’ -> step (EIf e1 e2 e3) (EIf e1’ e2 e3).

Inductive steps : expr -> expr -> Prop :=

| steps_refl e :

steps e e

| steps_step e1 e2 e3 :

step e1 e2 -> steps e2 e3 -> steps e1 e3.

(a) [3 points] Explain the intuitive semantics of the “either” construct. Your answer should
involve an example program. You should give the possible return values of your example
program and explain how the operational semantics assigns these return values. You may
write your example program in pseudo syntax, i.e., you do not have to use Coq syntax.

Endterm Test IMC060 17 June 2022 page 2 of 5

(b) [5 points] Define an interpreter for this language as:

Fixpoint interp (e : expr) : list (option val)

The list type is used to account for non-determinism. The interpreter should return all
possible return values as elements of the list. The list should be considered as a set, i.e.,
the order and duplicates are irrelevant. The option type is used to account for expressions
that get stuck. You should give your answer in Coq syntax. You are allowed to use
standard functions on lists, such as app : list A -> list A -> list A and:

Fixpoint flat_map {A B} (f : A -> list B) (l : list A) : list B :=

match l with

| [] => []

| x :: l => app (f x) (flat_map f l)

end.

(c) [5 points] State the correctness of the interpreter w.r.t. the small-step operational seman-
tics. Your correctness lemma(s) should account for both the Some and None cases. You
are allowed to use standard predicates on lists, such as In : A -> list A -> Prop. You
should give your answer in Coq syntax.

Question 3 (12 points)
This question is about programming in Rust.

(a) [4 points] Explain the difference between Rust types that are Clone and Copy. Your answer
should make the following clear:

� Is every that that is Clone also Copy. If yes, explain why. If not, give a counterexample.
� Is every that that is Copy also Clone. If yes, explain why. If not, give a counterexample.

(b) [3 points] Consider the following function:

fn swap1(v : &mut Vec<i32>, i : usize, j : usize) {

let x = v[i];

v[i] = v[j];

v[j] = x

}

(Here, usize is a large integer type that can represent all array indices.)

Does the Rust type system accept the function swap1? If yes, explain why. If not, explain
exactly where the Rust type checker will complain.

(c) [5 points] Implement the function:

fn swap2<T : Clone>(v : &mut Vec<T>, i : usize, j : usize)

You should explain why the Rust type checker accepts your implementation.

Question 4 (23 points)
We consider the semantics of a simply-typed language with spawn and join similar to those
operations in Rust. The formal syntax of our language is as follows:

e ∈ Expr ::= x | n | tid | λx. e | e1 e2 | spawn e | join e

A ∈ Type ::= nat | A1 → A2 | joinhandle A

We let variables x ∈ string, numerals n ∈ N, and thread IDs tid ∈ N.

Endterm Test IMC060 17 June 2022 page 3 of 5

Aside from the usual typing rules of the simply-typed lambda calculus with natural numbers,
the type system has the following typing rules for spawn and join:

Γ ⊢ e : A
Γ ⊢ spawn e : joinhandle A

Γ ⊢ e : joinhandle A

Γ ⊢ join e : A

The intuitive semantics is that spawn e creates new thread that runs expression e, and returns
the thread’s join handle (represented as a thread ID). The construct join e will wait for the
spawned thread e to terminate. Since the type system is unrestricted (i.e., not substructural),
one can use a join handler zero or multiple times, possibly in different threads. The idea is that
each join will spin until the associated thread has terminated, and then obtains the return
value of that thread.

We let Val ⊆ Expr denote the subset of expressions that are values, i.e., numerals n, thread
IDs tid , and functions λx. e. Configurations σ are represented as lists of threads e1 . . . en. The
main thread is the first element in the configuration, followed by all other threads in the order
they were spawned. Threads that have terminated (i.e., have reduced to a value) are kept in
the configuration. The small-step reduction σ ⇒i σ

′ says that thread i in configuration σ can
step to configuration σ′:

σ(i) = k ((λx. e) v) ctx k

σ ⇒i σ [i := k (subst x v e)]

σ(i) = k (spawn e) tid = length σ ctx k

σ ⇒i (σ [i := k tid] ++ [e])]

σ(i) = k (join tid) σ(tid) = e e /∈ Val ctx k

σ ⇒i σ

σ(i) = k (join tid) σ(tid) = v v ∈ Val ctx k

σ ⇒i σ [i := k v]

We represent evaluation contexts k as functions from expressions to expressions. The judgment
ctx k says that k is a valid evaluation context. We use the notation σ(i) to look up the ith
element of a list (i.e., the assertion σ(i) = e means that the index i is within bounds of the list
σ, and the value e is stored at position i in the list σ), and the notation σ [i := e] to overwrite
the ith element of the list σ with value e.

The step relation σ ⇒ σ′ non-deterministically lets a thread take a step:

σ ⇒i σ
′ i < length σ

σ ⇒ σ′

Our goal is to prove type safety, that is: If ∅ ⊢ e : A, then safe [e]. Safety is defined as follows:

safe σ ≜ ∀σ′, (σ ⇒∗ σ′) → ∀i < length σ′. (σ′(i) ∈ Val) ∨ (∃σ′′. σ′ ⇒i σ
′′)

Here, ⇒∗ is the reflexive-transitive closure of ⇒.

(a) [4 points] To prove type safety, we need to define a run-time typing judgment ⊢cfg σ : A for
configurations. We then prove the following properties of the run-time typing judgment:

� Initialization: ∅ ⊢ e : A implies ⊢cfg [e] : A

Endterm Test IMC060 17 June 2022 page 4 of 5

� Preservation: ⊢cfg σ : A and σ ⇒ σ′ implies ⊢cfg σ′ : A
� Progress: ⊢cfg σ : A implies ∀i < length σ. (σ(i) ∈ Val) ∨ (∃σ′. σ ⇒i σ

′)

Explain how these three properties imply type safety.

(b) [7 points] To define the run-time typing judgment ⊢cfg σ : A for configurations, we first
define a run-time typing judgment Σ | Γ ⊢ e : A for expressions. Here, Σ is a thread
typing represented as a list containing the types of all threads in the configuration. Give
all inference rules for the run-time typing judgment Σ | Γ ⊢ e : A required to prove type
safety.

(c) [6 points] Give a definition of the run-time typing judgment ⊢cfg σ : A for configurations
and briefly indicate why the three properties in Question 4.a hold. You do not need to
give a formal proof of these properties.

(d) [3 points] Our definition of type safety does not rule out configurations that are deadlocked
i.e., configurations consisting of threads that spin indefinitely long via join to wait on
each other. Give an example of a configuration σ that is deadlocked, but for which safe σ
holds. Explain your answer.

(e) [3 points] Does the type system rule out deadlocks? If yes, give an intuition why. If not,
give an example of a program that is well-typed, but that deadlocks.

Question 5 (15 points)
For each proposition of separation logic below, state precisely the set of heaps it describes. You
should explain your answers. (Recall that ⊤ is True, ⊥ is False, and ¬P is P → ⊥.)

(a) [3 points] l 7→ n ∗ ¬(l 7→ n)

(b) [3 points] l 7→ n ∧ ¬(l 7→ n)

(c) [3 points] (l 7→ n ∗ ⊤) ∧ (k 7→ m ∗ ⊤)

(d) [3 points] l 7→ n ∧ k 7→ (−n)

(e) [3 points] l 7→ n ∗ ((k 7→ m) → emp)

Question 6 (13 points)
In this exercise we consider a linear type system with a typing judgment Γ1 ⊢ e : A ⊣ Γ2

with two contexts. Here, Γ1 is the pre-typing context and Γ2 is the post-typing context. The
idea is that the post-typing context Γ2 contains the variables from Γ1 that are not used by the
expression e. Examples of typing rules are:

n ∈ N
Γ ⊢ n : nat ⊣ Γ Γ, x : A ⊢ x : A ⊣ Γ

Γ1 ⊢ e1 : A ⊸ B ⊣ Γ2 Γ2 ⊢ e2 : A ⊣ Γ3

Γ1 ⊢ e1 e2 : B ⊣ Γ3

(a) [3 points] State a theorem that formalizes the expected equivalence between the standard
linear typing judgment Γ ⊢ e : A with a single context (from week 11), and the judgment
Γ1 ⊢ e : A ⊣ Γ2 with two contexts.

(b) [3 points] Give the typing rule for let x = e1 in e2 using the typing judgment with two
contexts.

(c) [4 points] Assume that you have to implement a type checker for a linear type system,
i.e., a function/algorithm that given an expression computes its type. Explain why the

Endterm Test IMC060 17 June 2022 page 5 of 5

typing judgment Γ ⊢ e : A with one context is not directly suitable for implementing a
type checking function/algorithm, and how the typing judgment Γ1 ⊢ e : A ⊣ Γ2 with two
contexts helps. Clearly describe the type signature of the type checking functions that
you consider. (Note: You do not have to worry about other challenging aspects of type
checking that also appear when considering ordinary/unrestricted programming languages,
like the inference of function types of λ-expressions/types of λ-bound variables.)

(d) [3 points] Give the semantic interpretation of the judgment Γ1 ⊢ e : A ⊣ Γ2 in separation
logic. You are allowed to use the parallel substitution subst map v⃗ e, and the semantic
context typing ctx typed Γ v⃗, where v⃗ is a finite map from variables names to values.

Question 7 (15 points)
This exercise is about the verification of the following concurrent program using Iris:

foo n ≜ let r = allocn in

let lk = newlock () in acquire lk ;
r := ! r − 10;
if (! r) < 0 then 1 + () else release lk

acquire lk ;
r := ! r − 20;
release lk

 ;

()

For this exercise, you need to use the following rules of Iris for locks lk with assertion isLock lk R
and ghost variables γ with assertions γ ↪→• n and γ ↪→◦ n:{

R
}
newlock ()

{
lk . isLock lk R

}
(Ht-new-lock){

isLock lk R
}
acquire lk

{
R
}

(Ht-acquire){
isLock lk R ∗R

}
release lk

{
True

}
(Ht-release)

isLock lk R −∗ isLock lk R ∗ isLock lk R (Lock-dup)

True −∗ |⇛(∃γ. γ ↪→• n ∗ γ ↪→◦ n) (Ghost-alloc)

γ ↪→• n ∗ γ ↪→◦ m −∗ n = m (Ghost-agree)

γ ↪→• n ∗ γ ↪→◦ m −∗ |⇛(γ ↪→• n
′ ∗ γ ↪→◦ n

′) (Ghost-update)

(a) [3 points] What are the possible behaviors of foo n, where n ∈ Z? Give a Hoare triple
for foo n that exactly describes the safe behaviors. Give an intuitive explanation for why
this Hoare triple holds.

(b) [3 points] To verify that the function foo n satisfies the Hoare triple, we need to come
up with an invariant R for the lock lk that guards the value of location r. Use ghost
variables to give a lock invariant R with which you can prove your specification. Explain
what initial values you use for the ghost variables.

(c) [9 points] Give a proof outline for your Hoare triple for the function foo n.

End of the exam

