Endterm Test Program verification with types and logic (IMCO060)

17 June 2022

Additional materials (laptops, tablets, phones, calculators, or books) are not allowed.
The use of your own notes is not allowed.

This test consists of 7 questions.

You can obtain 100 points in total. Your final exam grade is determined by:

btained point
final exam grade 2 min (107 149- obtalned poin s)

100 — 23

(Changes after the exam took place:) Since the exam turned out to be too long, Exer-
cise @ has been turned into a bonus.
The division of points among the questions is:

Question: |1 | 21 | B | @ | |5[| 16| | |7] | Total

Points: 9113112231513 | 15 100

e Read the text and the questions carefully.
e Write proofs, terms and types in this test according to the conventions introduced during the

course. Make sure to be very precise.
Make sure to motivate your answer to every question.

Good luck on your test!

Endterm Test IMCO060 17 June 2022 page 1 of 11

Question 1 (9 points)
For a type A we have the following notions of equality in Coq:

® eq : A >A > Prop
® eqgb : A -> A -> bool
® dec : forall x1 x2 : A, { eq x1 x2 } + { ~eq x1 x2 }.

This question is about these three notions of equality.

(a) [4 points] Explain the difference between eq and egb. You should give the formal equiva-
lence between eq and egb as a Lemma in Coq syntax.

Solution: The notion eq is a mathematical statement and the notion eqgb is an algo-
rithm. The formal correspondence is as follows:

Lemma egb_correct : forall x1 x2,
eq x1 x2 <-> egb x1 x2 = true.

(b) [2 points] Explain the type forall x1 x2 : A, { eq x1 x2 } + { ~eq x1 x2 } of dec.

Solution: The type { eq x1 x2 } + { ~eq x1 x2 } is a sumbool. A sumbool is sim-
ilar to the Boolean type, but the constructors left Heq and right Hneq are annotated
with a proof of equality Heq : eq x1 x2, respectively, inequality Hneq : ~eq x1 x2.

(c) [3 points] Define eqb in terms of dec. Explain how to prove the Lemma of Question for
your definition of eqb. You do not need to give a Coq proof script, but you should give a
clear description of how the proof is carried out.

Solution:

Definition egb : A -> A -> bool := fun x1 x2 =>
if dec x1 x2 then true else false.

In order to prove the lemma eqb_correct, we unfold the definition of eqb and then
perform a case analysis (i.e., destruct) on dec x1 x2. This leads to the following two
goals, which are both tautologies:

® eq x1 x2 <> true = true with hypothesis Heq : eq x1 x2
® eq x1 x2 <-> false = true with hypothesis Hneq : ~eq x1 x2

Question 2 (13 points)
Consider the syntax and small-step semantics of a small language with an “either” construct.

Inductive val :=
| VBool : bool -> val
| VNat : nat -> val.

Inductive expr :=
| EVal : val -> expr
| EEither : expr -> expr -> expr

Endterm Test IMCO060 17 June 2022 page 2 of 11

| EIf : expr -> expr -> expr —-> expr.

Inductive head_step : expr -> expr -> Prop :=

| Either_head_step_l el e2 :
head_step (EEither el e2) el
| Either_head_step_r el e2 :
head_step (EEither el e2) e2
| If_head_step_true e2 e3 :
head_step (EIf (EVal (VBool true)) e2 e3) e2
| If_head_step_false e2 e3 :
head_step (EIf (EVal (VBool false)) e2 e3) e3.

Inductive step : expr -> expr -> Prop :=

| do_head_step e e’
head_step e e’ -> step e e’
| If_step el el’ e2 e3 :
step el el’ -> step (EIf el e2 e3) (EIf el’ e2 e3).

Inductive steps : expr -> expr -> Prop :=

(a)

| steps_refl e :
steps e e
| steps_step el e2 e3 :
step el e2 -> steps e2 e3 -> steps el e3.

[3 points| Explain the intuitive semantics of the “either” construct. Your answer should
involve an example program. You should give the possible return values of your example
program and explain how the operational semantics assigns these return values. You may
write your example program in pseudo syntax, i.e., you do not have to use Coq syntax.

Solution: The expression EEither el e2 non-deterministically evaluates to el or e2.
A sample is e := EEither (EVal (VBool true)) (EVal (VBool false)), which tosses
a coin. We have steps e (EVal (VBool true)) and steps e (EVal (VBool false)).

[5 points] Define an interpreter for this language as:

Fixpoint interp (e : expr) : list (option val)

The 1ist type is used to account for non-determinism. The interpreter should return all
possible return values as elements of the list. The list should be considered as a set, i.e.,
the order and duplicates are irrelevant. The option type is used to account for expressions
that get stuck. You should give your answer in Coq syntax. You are allowed to use
standard functions on lists, such as app : list A -> list A -> list A and:

Fixpoint flat_map {A B} (f : A -> list B) (1 : list A) : list B :=
match 1 with
[00 =>1I
| x :: 1 =>app (f x) (flat_map f 1)
end.

Solution:

Endterm Test IMCO060 17 June 2022 page 3 of 11

Fixpoint interp (e : expr) : list (option val) :=
match e with
| EVal v => [Some v]
| EEither el e2 => interp el ++ interp e2
| EIf e el e2 => flat_map (fun v =>
match v with
| Some (VBool b) => interp (if b then el else e2)
| _ => [None]
end) (interp e)
end.

(c) [5 points] State the correctness of the interpreter w.r.t. the small-step operational seman-
tics. Your correctness lemma(s) should account for both the Some and None cases. You
are allowed to use standard predicates on lists, such as In : A -> list A -> Prop. You
should give your answer in Coq syntax.

Solution:

Definition unsafe e :=
exists e’, steps e e’ /\ ~(exists v, e’ = EVal v) /\ ~(exists e’’, step e’ e’’).

Lemma interp_Some e v : In (Some v) (interp e) <-> steps e (EVal v).
Lemma interp_None e : In None (interp e) <-> unsafe e.

Question 3 (12 points)
This question is about programming in Rust.
a) |4 points] Explain the difference between Rust types that are Clone and Copy. Your answer
(a) [4p p yp py
should make the following clear:

e Isevery that that is Clone also Copy. If yes, explain why. If not, give a counterexample.
e [s every that that is Copy also Clone. If yes, explain why. If not, give a counterexample.

Solution: A type is Copy if it can be duplicated through a shallow copy, and Clone if
it can be duplicated through a deep copy. Every type that is Copy is also Clone. The
inclusion does not hold in the other way: Vec<i32> is Clone, not not Copy.

(b) [3 points] Consider the following function:

fn swapl(v : &mut Vec<i32>, i : usize, j : usize) {
let x = v[i];
v[i] = v[j];
v[jl = x

}

(Here, usize is a large integer type that can represent all array indices.)
Does the Rust type system accept the function swap1? If yes, explain why. If not, explain
exactly where the Rust type checker will complain.

Endterm Test IMCO060 17 June 2022 page 4 of 11

Solution: The Rust type checker accepts this definition. Since 132 is Copy, we do not
have to give up ownership of the vector v when accessing elements.

(c) [5 points] Implement the function:

fn swap2<T : Clone>(v : &mut Vec<T>, i : usize, j : usize)

You should explain why the Rust type checker accepts your implementation.

Solution:

fn swap2<T : Clone>(v : &mut Vec<T>, i : usize, j : usize) {
let x = v[i].clone();
v[i] = v[jl.clone();
v[ijl = x

}

When accessing a vector element v[k], one has to give up ownership of the entire
vector v for the lifetime of the element. Since we need to mutate the vector v during
the lifetime of both v[i] and v[j], we need to clone the elements.
Additional/alternative answer: One could use std: :mem: : swap from the Rust standard
library (which itself is implemented using unsafe code), which is more efficient, and
avoids the need for the type to be Clone.

Question 4 (23 points)
We consider the semantics of a simply-typed language with spawn and join similar to those
operations in Rust. The formal syntax of our language is as follows:

e€Expru=x|n|tid|Ax.e|e ey | spawne| joine
A € Type :=nat | A; — Ay | joinhandle A

We let variables x € string, numerals n € N, and thread IDs tid € N.

Aside from the usual typing rules of the simply-typed lambda calculus with natural numbers,
the type system has the following typing rules for spawn and join:

'He: A I' - e: joinhandle A
I' - spawn e : joinhandle A 't joine: A

The intuitive semantics is that spawn e creates new thread that runs expression e, and returns
the thread’s join handle (represented as a thread ID). The construct join e will wait for the
spawned thread e to terminate. Since the type system is unrestricted (i.e., not substructural),
one can use a join handler zero or multiple times, possibly in different threads. The idea is that
each join will spin until the associated thread has terminated, and then obtains the return
value of that thread.

We let Val C Expr denote the subset of expressions that are values, i.e., numerals n, thread
IDs tid, and functions Az. e. Configurations o are represented as lists of threads e; ...e,. The

Endterm Test IMCO060 17 June 2022 page 5 of 11

main thread is the first element in the configuration, followed by all other threads in the order
they were spawned. Threads that have terminated (i.e., have reduced to a value) are kept in
the configuration. The small-step reduction o =; o’ says that thread 7 in configuration o can
step to configuration o”:

o(i) =k ((Ax. e) v) ctx k o(i) = k (spawn e) tid = length o ctx k
o = 0i:=k (subst z v e)] o = (o[i ==k tid] ++ [e])]

o(i) =k (join tid) o(tid) =e e ¢ Val ctx k

0O =; 0

o(i) =k (join tid) o(tid) =v v € Val ctx k
o= 0=k

We represent evaluation contexts k as functions from expressions to expressions. The judgment
ctx k says that k is a valid evaluation context. We use the notation o (i) to look up the ith
element of a list (i.e., the assertion o(i) = e means that the index i is within bounds of the list
o, and the value e is stored at position 7 in the list o), and the notation o [i := €] to overwrite
the 7th element of the list o with value e.

The step relation 0 = ¢’ non-deterministically lets a thread take a step:

o =; 0 1 < length o
o= o

Our goal is to prove type safety, that is: If) - e : A, then safe [e]. Safety is defined as follows:
safe 0 £ Vo', (0 = ') — Vi < length o’. (¢/(i) € Val) vV (30”. o' =; 0”)

Here, =* is the reflexive-transitive closure of =.

(a) [4 points] To prove type safety, we need to define a run-time typing judgment k¢ o : A for
configurations. We then prove the following properties of the run-time typing judgment:
e Initialization:) e : A implies g [e] 1 A
e Preservation: ¢y 0 : A and 0 = ¢’ implies ¢y 0’ : A
e Progress: ¢ 0 : A implies Vi < length 0. (0(i) € Val) vV (30’. 0 = o)
Explain how these three properties imply type safety.

Solution: Assume () | e : A, we need to prove safe [¢]. That means we should assume
that [e] =* ¢/, and need to prove that all threads in ¢’ are a value or can step. Given
0 Fe: A, by (1) we have b [e] : A. By induction on [e] =* o', we obtain by (2) that
Fefg 0+ A. By (3) this gives that all threads in ¢’ are a value or can step.

(b) [7 points] To define the run-time typing judgment gz o : A for configurations, we first
define a run-time typing judgment ¥ | I' F e : A for expressions. Here, ¥ is a thread
typing represented as a list containing the types of all threads in the configuration. Give
all inference rules for the run-time typing judgment ¥ | I' - e : A required to prove type
safety.

Endterm Test IMCO060 17 June 2022 page 6 of 11

Solution:
() =4 neN S(tid) = A
Y |Tkx:A Y[k n:nat Y | T I tid : joinhandle A
S|T,z:AFe: B S|TFe:A—>B %|[They:A
Y| THFAr.e:A— B Y|Tkee:B
Y|TkFe: A Y |T'F e: joinhandle A
Y | I'F spawn e : joinhandle A Y|k joine: A

(c) [6 points] Give a definition of the run-time typing judgment t-c¢ o @ A for configurations
and briefly indicate why the three properties in Question hold. You do not need to
give a formal proof of these properties.

Solution: A possible definition of ¢z 0 : A is as follows:

Feggo: A £ 3% length ¥ = length o A
(0)=AA
(Vi <lengtho. X | T'F o(i) : X(7))

The three properties in Question [4.a] hold because:

e Initialization. Let ¥ = [A]. We prove that I' - e : A implies ¥ | 'F e : A.

e Preservation. We need to prove that after a step of reduction, we can find a new
thread typing ., and all resulting threads are typed in that >. Such a ¥ exists
because the types of threads do not change, only new threads can be added.

e Progress: The definition of -c¢; 0 : A tells us that each thread is run-time typed.
By the definition of the run-time judgment for expressions, we obtain that each
threads is either a value or can step.

(d) [3 points] Our definition of type safety does not rule out configurations that are deadlocked
i.e., configurations consisting of threads that spin indefinitely long via join to wait on
each other. Give an example of a configuration o that is deadlocked, but for which safe o
holds. Explain your answer.

Solution: Take [join 1; join 0]. The first thread will spin indefinitely long waiting
for the second, and the second will spin indefinitely long waiting for the first. This
configuration is safe, because spinning is considered to be a safe behavior.

(e) [3 points] Does the type system rule out deadlocks? If yes, give an intuition why. If not,
give an example of a program that is well-typed, but that deadlocks.

Endterm Test IMCO060 17 June 2022 page 7 of 11

Solution: The type system rules out deadlocks.

In a deadlocked configuration, threads will be waiting for each other in a cycle, see the
answer of Question [4.d] for example. While such a configuration can be typed using
the run-time typing judgment, it cannot be typed using the static typing judgment.
Deadlocked configurations can never be reached from a statically typed program, since
a thread can only “join” another thread that has been spawned earlier.

Question 5 (15 points)
For each proposition of separation logic below, state precisely the set of heaps it describes. You
should explain your answers. (Recall that T is True, L is False, and =P is P — L.)

(a) [3 points] I+ n*x—(l — n)

(b)

(d)

Solution: This proposition describes the set of heaps that contain at least the location
[with value n. Due to the separating conjunction %, the heap should be split up into
a part containing [with value v, and an arbitrary other part that does not contain [.

[3 points] [— n A —=(l —n)

Solution: This proposition is logically equivalent to L, it thus describes the empty
set of heaps. Note that P A P is always false, since no proposition can hold and not
hold at the same time for the same heap.

[3 points] (I—nxT)A(k—m=xT)

Solution: This proposition describes the heaps at least the locations [and k& with
values n and m, respectively. Due to the conjunction A, the locations [and k may be
the same.

[3 points] [— n Ak~ (—n)

Solution: The proposition describes the heap with location [, which is equal to k,
with value 0. Due to the conjunction A the locations [and k£ should be the same.
Moreover, this location can only hold the values n and —n at the same time if n = 0.

[3 points] | — nx ((k — m) — emp)

Solution: This proposition describes the set of heaps that contain at least location
[with value n. The additional part of the heap should not contain exactly location
k with value m (it might contain location k with another value than m). Due to the
separating conjunction *, the heap should be split up into a part containing [with value
v, and an other part satisfying (k — m) — emp. The proposition (k — m) — emp
describes all heaps except those with location k with value m.

Endterm Test IMCO060 17 June 2022 page 8 of 11

Question 6 (13 points)
In this exercise we consider a linear type system with a typing judgment I'y H e : A 4 T’y
with two contexts. Here, I'; is the pre-typing context and I'y is the post-typing context. The
idea is that the post-typing context I's contains the variables from I'y that are not used by the
expression e. Examples of typing rules are:

neN F1|—€1:A—OB—|F2 FQ"GQ:A—|F3

I'kn:nat 4T z:AFx: AT I'MFeieo: BT

(a)

[3 points| State a theorem that formalizes the expected equivalence between the standard
linear typing judgment I' F e : A with a single context (from week 11), and the judgment
I'i+e: ATy with two contexts.

Solution:
IMFe: ATy iff AT =T +H+HT9ATFe: A

[3 points] Give the typing rule for let z = e; in es using the typing judgment with two
contexts.

Solution:

F1|—611A—|F2 FQ,CEiAI‘GQIB"Fg l‘¢d0mF2
I'NFletz=e;iney: BT

[4 points] Assume that you have to implement a type checker for a linear type system,
i.e., a function/algorithm that given an expression computes its type. Explain why the
typing judgment I' - e : A with one context is not directly suitable for implementing a
type checking function/algorithm, and how the typing judgment I'y F e : A 4 I'y with two
contexts helps. Clearly describe the type signature of the type checking functions that
you consider. (Note: You do not have to worry about other challenging aspects of type
checking that also appear when considering ordinary/unrestricted programming languages,
like the inference of function types of A-expressions/types of A-bound variables.)

Solution: If you make a type checker inspired by the one-context judgment, you end
up with a signature such as the following:

Fixpoint typecheck : ctx -> term -> expr -> option ty := ...

The challenge is type checking binary constructs such as function application and
arithmetic operators. There you need to split the context I' into parts I'; and I'y with
I' =T'1 ++ I'y, and then check the operands in I'y and I's, respectively. Since there
are exponentially many splittings of I, this quickly becomes infeasible.

If you make a type checker inspired by the two-context judgment, you end up with a
signature such as the following:

Endterm Test IMCO060 17 June 2022 page 9 of 11

Fixpoint typecheck : ctx -> term -> expr -> option (ctx * ty) := ...

Now you can type check the operands of binary constructs in sequence. You can type
check the first operand first, and then use the post-typing context to type check the
second operand.

(d) [3 points] Give the semantic interpretation of the judgment I'y e : A 4Ty in separation
logic. You are allowed to use the parallel substitution subst_map ¢ e, and the semantic
context typing ctx_typed I' ¥, where ¥ is a finite map from variables names to values.

Solution:

I'1Fe: ATy 2 Vi ctx_typed 'y o - WP subst_map @ e {v. Av * ctx_typed 'y '}

Question 7 (15 points)
This exercise is about the verification of the following concurrent program using Iris:

foon 2 let r =allocn in
let Ik = newlock () in
acquire [k; acquire lk;
r:=1r—10; r:=1r—20;
if (!7) < 0 then 1+ () else release [k || release [k

0

For this exercise, you need to use the following rules of Iris for locks [k with assertion isLock Ik R
and ghost variables v with assertions v < n and v < n

{ R } newlock () { lk. isLock Ik R} (Ht-new-lock)

{isLock Ik R} acquire lk { R } (Ht-acquire)
{isLock Ik R R } release lk { True } (Ht-release)
isLock [k R — isLock [k Rx*isLock lk R (Lock-dup)
True — B (I7. 7 e nky <% n) (Ghost-alloc)

Ve MKy S m — n=m (Ghost-agree)
Y e MEY oM —x (7 e n kY =%) (Ghost-update)

(a) [3 points] What are the possible behaviors of foo n, where n € Z? Give a Hoare triple
for foo n that exactly describes the safe behaviors. Give an intuitive explanation for why
this Hoare triple holds.

Solution: The program is safe if n is at least (or equal to) 30. The Hoare triple is:

{30§n}foon{w.w=()}

Endterm Test IMCO060 17 June 2022 page 10 of 11

This Hoare triple holds intuitively because there are two possible execution orders.
Either the first thread acquires the lock, and then the second thread, or vice versa. If
the first thread acquires the lock first, the program will crash if n is smaller than 10
because the sub-expression 1+ () is executed. If the second thread acquires the lock
first, it will decrement n with 20 first. Hence the program will crash if n is smaller
than 30.

(b) [3 points] To verify that the function foo n satisfies the Hoare triple, we need to come
up with an invariant R for the lock Ik that guards the value of location r. Use ghost
variables to give a lock invariant R with which you can prove your specification. Explain
what initial values you use for the ghost variables.

Solution: (Many alternative solutions of the following two sub-exercises are possible.)
We use two ghost variables «v; and s to keep track of the number of decrements by
the first and second thread:

Réak’l,k‘g:N.T‘H((n—30)+k‘1+k‘2)*’71 e k’l*’yg e k‘g

The ghost values describe the remaining decrements each thread is allowed to perform.
The initial values of the ghost variables should be 10 and 20.

(c) [9 points] Give a proof outline for your Hoare triple for the function foo n.

Solution:

{30<n}

let r = allocn in

{r—mn}

{r = nxy e 10591 S 10 % 72 < 20 % 72 <% 20 }

{ Ry <5 10 %72 < 20 }

let Ik = newlock () in

{ isLock [k R %7y < 10 % y2 < 20}
acquire lk; acquire lk;
r:=!r—10; r:=1r—20; |;
if (!r) < 0 then 14 () else release Ik || release Ik

9

{ww=()}

The proof outline for the first thread is:

{isLock Ik R*x~y < 10}

acquire lk;

{isLock Ik Rxy1 <% 10x7 = ((n—30) + k1 + k2) * 71 e k1 %72 < /{:2}
{isLock Ik R*71 <% 10%7 +— ((n—30) 4+ 10 + k2) * 71 < 10 % 72 < k:g}
r:=1r—10;

{isLock Ik R*7y1 <% 10x7 +— ((n—30) + 0 + ka) * 71 < 10 % 72 < kg}
{isLock Ik Rxy1 <% 07— ((n—30) + 0+ ko) %71 < 0% 72 < k:g}
Tt thry<Othenrt=%)

{isLock Ik Rxy1 <% 07— ((n—30) + 0+ ko) %71 < 0% 72 < k:g}
{isLock Ik R*~yp <—>OO*R}

else release Ik

{isLock Ik R*~yp <—>o()}

Endterm Test IMCO060 17 June 2022 page 11 of 11

The “then” branch with 1+ () is never executed because 0 < (n — 30) + 0 + k2. That
inequality holds because 30 < n and k3 € N.
The proof outline for the second thread is:

{isLock Ik R %~y < 20}

acquire lk;

{isLock Ik R*7y <% 20 %7 +— ((n—30) 4+ k1 + k2) * 71 e k1 * 72 <]{32}
{isLock Ik Rxv2 <% 20 %1 — ((n — 30) + k1 4 20) * 71 <% k1 % y2 < 20 }
r:=!r—20;

{isLock Ik R*7y <% 207 +— ((n—30) + k1 +0) %71 < k1 %72 < 20}
{isLock Ik R 2 <5 0% 7+ ((n —30) + k1 + 0) 71 < ky %72 < 0 }
else release [k

{isLock Ik R * s <—>OO}

End of the exam

