
Theory exercises

Program verification with types and logic (NWI-IMC060)

Week 12

1. This exercise is about linear type systems.
(a) Consider the typing rule for linear function types:

Γ, x : A ` e : B x /∈ dom Γ

Γ ` λx. e : A (B

Assume we were to omit the side condition x /∈ dom Γ and instead “overwrite” the type of
x in Γ. That is, we would use the following modified rule:

(delete x Γ), x : A ` e : B

Γ ` λx. e : A (B

Does this modified rule preserve the strong type safety theorem of linear type systems?
That is, does it (1) forbid use-after-free and double-free errors (2) forbid memory leaks? If
yes, explain why (you do not need to give a proof). If no, give a counterexample.

(b) Assume we were to add recursive functions with the following typing rule:

Γ, f : A (B, x : A ` e : B x /∈ dom Γ f /∈ dom Γ

Γ ` rec f x. e : A (B

Does this rule preserve our strong type safety theorem? That is, does it (1) forbid use-after-
free and double-free errors (2) forbid memory leaks? If yes, explain why (you do not need
to give a proof). If no, give a counterexample and explain how you could repair this rule.

2. In this exercise we consider a linear type system with a typing judgment Γ1 ` e : A a Γ2 with
two contexts. Here, Γ1 is the pre-typing context and Γ2 is the post-typing context. The idea
is that the post-typing context Γ2 contains the variables from Γ1 that are not used by the
expression e. Examples of typing rules are:

n ∈ N
Γ ` n : nat a Γ Γ, x : A ` x : A a Γ

Γ1 ` e1 : A (B a Γ2 Γ2 ` e2 : A a Γ3

Γ1 ` e1 e2 : B a Γ3

(a) State a theorem that formalizes the expected equivalence between the standard linear typing
judgment Γ ` e : A with a single context (from week 11), and the judgment Γ1 ` e : A a Γ2

with two contexts.
(b) Give the typing rule for let x = e1 in e2 using the typing judgment with two contexts.

1

(c) Assume that you have to implement a type checker for a linear type system, i.e., a
function/algorithm that given an expression computes its type. Explain why the typing
judgment Γ ` e : A with one context is not directly suitable for implementing a type
checking function/algorithm, and how the typing judgment Γ1 ` e : A a Γ2 with two
contexts helps. Clearly describe the type signature of the type checking functions that
you consider. (Note: You do not have to worry about other challenging aspects of type
checking that also appear when considering ordinary/unrestricted programming languages,
like the inference of function types of λ-expressions/types of λ-bound variables.)

(d) Give the semantic interpretation of the judgment Γ1 ` e : A a Γ2 in separation logic. You
are allowed to use the parallel substitution subst_map ~v e, and the semantic context typing
ctx_typed Γ ~v, where ~v is a finite map from variables names to values.

3. This question is about linear type systems.
(a) Linear type systems ensure two properties (a) data is not used after it has been deallocated,

and (b) all data is eventually deallocated. Explain how linear type systems ensure these
two properties.

(b) Consider the following typing rules for linear references:

Γ ` e : A

Γ ` alloc e : ref(A)

Γ ` e : ref(A)

Γ ` free e : A

Γ ` e : ref(A)

Γ ` load e : ref(moved)×A

Γ1 ` e1 : ref(A) Γ2 ` e2 : A

Γ1 ++ Γ2 ` store e1 e2 : ref(A)

There is a bug in the rule for store. Explain which of the two aforementioned properties
of linear type systems break. Give a counterexample that exhibits the problem.

(c) Give a correct typing rule for store, and explain how it solves the bug.
(d) Explain the difference between a linear type system and an affine type system.
(e) When creating a semantic model of a linear type system, we model each type A as a function

A : val -> sepProp. Give the semantic definition of ref(A) as such a predicate.

2

