
Exam Program verification with types and logic (IMC060)

16 June 2023

• Additional materials (laptops, tablets, phones, calculators, or books) are not allowed.
• The use of your own notes is not allowed.
• This test consists of 6 questions.
• You can obtain 90 points in total. Your final exam grade is determined by:

final exam grade ≜ 1 + 9 · obtained points

90

• The division of points among the questions is:

Question: 1 2 3 4 5 6 Total

Points: 15 15 15 15 15 15 90

• Read the text and the questions carefully.
• Write proofs, terms and types in this test according to the conventions introduced during the
course. Make sure to be very precise.

• Make sure to motivate your answer to every question.

Good luck on your test!

i

Exam IMC060 16 June 2023 page 1 of 5

Question 1 (15 points)
Consider the functions fold_left and fold_right defined in pseudo-Coq as follows:

Fixpoint fold_left f z xs :=

match xs with

| [] => z

| x :: xs => fold_left f (f z x) xs

end.

Fixpoint fold_right f z xs :=

match xs with

| [] => z

| x :: xs => f x (fold_right f z xs)

end.

(a) [2 points] Write down the most general types of fold_left and fold_right.

Solution:

fold_left : forall {A B}, (B -> A -> B) -> B -> list A -> B

fold_right : forall {A B}, (A -> B -> B) -> B -> list A -> B

(b) [3 points] Using fold_right, define the predicate In x xs that expresses whether an element
x is in the list xs. The type signature should be In : forall A, A -> list A -> Prop.

Solution: (Answers do not need to be point-free.)

Definition In : forall {A}, A -> list A -> Prop := fun A x =>

fold_right (compose or (eq x)) False.

(c) [3 points] Using fold_left, implement reverse : forall A, list A -> list A. Your so-
lution should have linear asymptotic time complexity.

Solution: (Answers do not need to be point-free.)

Definition reverse : forall {A}, list A -> list A := fun A =>

fold_left (flip cons) [].

(d) [3 points] Assume we are in the special case where f : A → A → A. In this case, we can
state a lemma that relates fold_left to fold_right as follows:

Lemma fold_left_right : forall {A} (f : A -> A -> A) z xs,

(* INSERT HERE *) ->

fold_left f z xs = fold_right f z xs

What precondition(s) should be used?

Solution:

Exam IMC060 16 June 2023 page 2 of 5

Lemma fold_left_right : forall {A} (f : A -> A -> A) z xs,

(forall x y, f x y = f y x) ->

(forall x1 x2 x3, f x1 (f x2 x3) = f (f x1 x2) x3) ->

fold_left f z xs = fold_right f z xs.

(e) [4 points] Assume we try to prove the lemma fold_left_right by starting with:

intros A f z xs Hpre.

induction xs as [|x xs IH].

In order to complete this proof, you need to state an auxiliary lemma about fold_left or
fold_right. Give the statement of this lemma and explain why it is useful. (You do not
need to give the proof of the auxiliary lemma.)

Solution:

Lemma fold_left_f : forall {A} (f : A -> A -> A) z xs x,

(forall x y, f x y = f y x) ->

(forall x1 x2 x3, f x1 (f x2 x3) = f (f x1 x2) x3) ->

fold_left f (f z x) xs = f x (fold_left f z xs).

Question 2 (15 points)
Assume that we have a pure, statically-typed language with a small-step operational semantics.
Formally, assume that we have a set of expressions Expr, a set of values Val ⊆ Expr, a set of
types Type, a small-step operational semantics e⇝ e′, and a typing judgment ⊢ e : A for closed
expressions e.

This language enjoys type safety if for all expressions e ∈ Expr and types A ∈ Type such that
⊢ e : A, we have:

∀e′ ∈ Expr. (e⇝∗ e′) → (e′ ∈ Val) ∨ (∃e′′. e′ ⇝ e′′)

Here, ⇝∗ is reflexive-transitive closure of the relation ⇝.

(a) [3 points] Type safety is often proved via the method of progress and preservation. Give
the statements of progress and preservation and explain why together they imply type
safety.

Solution:

• Preservation: if e ⊢ A : and e⇝ e′ then e′ ⊢ A :.
• Progress: if e ⊢ A : then (e ∈ Val) ∨ (∃e′. e⇝ e′).

Do induction on ⇝∗.

(b) [6 points] Bob proposes the following property, which combines aspects of progress and
preservation into a single statement:

bob : ∀(e ∈ Expr)(A ∈ Type). (⊢ e : A) → (e ∈ Val) ∨ (∃e′. (e⇝ e′) ∧ (⊢ e′ : A))

Exam IMC060 16 June 2023 page 3 of 5

Does bob imply type safety? If yes, give a proof. If no, give a counterexample.

Your proof should be precise and make clear where and how you use bob. The proof
should be written in English, not Coq. Your counterexample should involve a definition
of a set of expressions Expr, a set of values Val ⊆ Expr, a set of types Type, a small-step
operational semantics e⇝ e′, and a typing judgment ⊢ e : A. You should clearly explain
that bob holds for your counterexample, but type safety does not.

Solution: Let Expr ≜ {i, f1, f2} and Val ≜ {f1} and Type ≜ {()}.

i⇝ f1 i⇝ f2 ⊢ i : () ⊢ f1 : ()

This language does not satisfy type safety. From i we can step to f2, which is final,
but not a value. This language satisfies bob. Every well-typed expression is either a
value or can step to another well-typed expression.

(c) [6 points] Does progress and preservation imply bob? If yes, give a proof. If no, give a
counterexample.

Your proof should be precise and make clear where and how you use progress and preserva-
tion. The proof should be written in English, not Coq. Your counterexample should involve
a definition of a set of expressions Expr, a set of values Val ⊆ Expr, a set of types Type, a
small-step operational semantics e⇝ e′, and a typing judgment ⊢ e : A. You should clearly
explain that progress and preservation hold for your counterexample, but bob does not.

Solution: Progress and preservation imply bob. To prove bob, consider an expression
e and type A with ⊢ e : A. By progress we know that e ∈ Val or e⇝ e′ for some e′. If
e ∈ Val, we are done. If e⇝ e′ we know ⊢ e′ : A by preservation. In that case, we are
done too.

Question 3 (15 points)
This question is about programming in Rust.

(a) [5 points] Consider the following Rust program:

1 let mut m = vec![1,2,3,4];

2 let a = &m[0];

3 m.push(5);

4 println!("{}", *a);

Does the Rust type checker accept this program? Is this program safe? What is the
behavior when running the program?

Solution: The Rust type checker does not accept this program. The lifetime of a ends
at line 3 because m is used. Type checking fails at line 4 with a lifetime error.

This program is not safe. The push on line 3 might have to reallocate the buffer of the
vector m. In that case, a becomes a dangling pointer, and the program might read old
memory or crash with a segmentation fault.

Exam IMC060 16 June 2023 page 4 of 5

(b) [5 points] Consider the following Rust program:

1 let m = Mutex::new(vec![1,2,3,4]);

2 let guard1 = m.lock().unwrap();

3 let a = &guard1[0];

4 let mut guard2 = m.lock().unwrap();

5 guard2.push(5);

6 println!("{}", *a);

Does the Rust type checker accept this program? Is this program safe? What is the
behavior when running the program?

Solution: The Rust type checker accepts this program, and therefore this program is
safe.

The program will cause a deadlock. There are two attempts to acquire the lock resulting
in lock guards guard1 and guard2 (line 2 and line 4). Both locks will only be released
at the end of the function. Hence the second m.lock() will never terminate/deadlock.

(c) [5 points] Consider the following two programs. Program one:

1 let mut x : Option<Vec<i32>> = Some(vec![1,2,3]);

2 let y : Vec<i32> = vec![1,2,3];

3 let p: &Vec<i32> = match &x {

4 None => { let z = y; &z },

5 Some(v) => v

6 };

7 println!("p[0] = {}", p[0]);

Program two:

1 let mut x : Option<Vec<i32>> = Some(vec![1,2,3]);

2 let y : Vec<i32> = vec![1,2,3];

3 let p: &Vec<i32> = match &x {

4 None => { let z = &y; z },

5 Some(v) => v

6 };

7 println!("p[0] = {}", p[0]);

The Rust type checker accepts one of these programs but not the other. Which one, and
why? Is the program that the Rust type checker rejects safe? Explain why or why not.

Solution: The Rust type checker accepts the second program, but not the first.

In the first, we move y into z, and assign the address &z of z to p (line 4). Since the
scope of z ends in line 4, &z becomes dangling reference. However, since x is Some, line
4 (the None branch) is never reached, so this would not cause actual unsafety.

In the second, z becomes a reference to y, which we in turn assign to p (line 4).

Question 4 (15 points)
We start with the lambda calculus with references, i.e., with allocation (alloc e), load (! l), store
(l := e), and free (free l). We extend it with a new nondeterministic choice operator e1 either e2,
which will execute either e1 or e2 entirely. For example (10 + 1) either 2 will result in either 11

Exam IMC060 16 June 2023 page 5 of 5

or 2. The expressions e1 and e2 may contain side-effects, e.g., (x := !x+ 1) either (x := !x ∗ 2)
will either increment of double the value of location x.

We give this language a standard small-step operational semantics (e, h)⇝ (e′, h), where e, e′

are expressions and h, h′ are heaps. The operational semantics of e1 either e2 is as follows:

(e1 either e2, h)⇝ (e1, h) (e1 either e2, h)⇝ (e2, h)

(a) [5 points] Alice and Bob want to use separation logic to verify safety of programs in this
language. They propose the following definitions of the weakest precondition connective:

WPalice e {Φ } ≜λh1. ∀e′, h′. ∀hf . dom h1 ∩ dom hf = ∅ →
(e, h1 ∪ hf)⇝∗ (e′, h′) →
∃h2. dom h2 ∩ dom hf = ∅ ∧

h′ = h2 ∪ hf ∧
((e′ ∈ Val ∧ Φ e′ h2) ∨ can step(e′, h′))

WPbob e {Φ } ≜λh1. ∀hf . dom h1 ∩ dom hf = ∅ →
∃v, h2. dom h2 ∩ dom hf = ∅ ∧

(e, h1 ∪ hf)⇝∗ (v, h2 ∪ hf) ∧
Φ v h2

Quantifiers in red were accidentally omitted in original version.

Here, ⇝∗ is reflexive-transitive closure of the relation ⇝, and can step(e′, h′) is defined as
∃e′′, h′′. (e′, h′)⇝ (e′′, h′′).

Considering the goal is to verify safety, should we use Alice’s or Bob’s version? Explain
your answer. For the version that we should not use, you should give a program e that is
unsafe, but can be verified using the weakest precondition (that is, WP e {Φ } is valid for
some Φ).

Solution: We should use Alice’s version. Alice’s version says that the program cannot
go wrong. Every execution either leads to a value, or one can keep on stepping.

Bob’s version says that there exists an execution to a final state that satisfies the
postcondition. However, with non-determinism this is not sufficient. No execution
should go wrong. For example, we can prove WPbob (10 either (1 + ())) { v. v = 10 }
using Bob’s version, while that program is not safe if non-deterministically the second
choice is used.

(b) [3 points] Give the Hoare-triple inference rule for e1 either e2, of the following form:

FILL OUT FILL OUT{
FILL OUT

}
e1 either e2

{
FILL OUT

}
Recall that Hoare triples are defined as

{
P
}
e
{
Φ
}
≜ P ⊢ WP e {Φ }, where the

postcondition has type Φ : Val → sepProp.

End of the exam

Exam IMC060 16 June 2023 page 6 of 5

Solution: {
P
}
e1

{
Φ
} {

P
}
ee

{
Φ
}{

P
}
e1 either e2

{
Φ
}

(c) [3 points] Give the weakest precondition rule for e1 either e2, of the following form:

FILL OUT ⊢ WP (e1 either e2) {Φ }

Solution:

WP e1 {Φ } ∧WP e2 {Φ } ⊢ WP (e1 either e2) {Φ }

(d) [4 points] Julie proposes the following linear typing rule for the choice operator:

Γ1 ⊢ e1 : A Γ2 ⊢ e2 : A Γ1 ∩ Γ2 = ∅
Γ1 ∪ Γ2 ⊢ e1 either e2 : A

Explain if this typing rule is sound or not. If it is not, you should provide a counterexample.
This involves a program that can be type-checked, but that performs an unsafe operation
(such as use-after-free or double-free) or leaks memory.

Solution: This typing rule is unsound. Consider:

let l = alloc 10 in ((free l) either 10)

Depending on the non-deterministic choice, either l will be freed, or l is leaked.

Question 5 (15 points)
For each proposition of separation logic below, state precisely the set of heaps it describes. You
should explain your answers.

We represent locations l ∈ Loc ≜ N and values v ∈ Val ≜ N as natural numbers. Recall that
True is the separation logic proposition representing the set of all possible heaps.

(a) [3 points] (∃l. l 7→ l) ∗ True

Solution: Heaps that have at least one location that points to itself satisfy.

The proposition states that the heap should be split up into two parts. One that
satisfies (∃l. l 7→ l), and one part that is arbitrary. The proposition (∃l. l 7→ l) describes
the heaps that have exactly a location that points to itself. Hence the whole version
with ∗ True describes the heaps that have at least one location that points to itself.

Exam IMC060 16 June 2023 page 7 of 5

(b) [3 points] ∀l. l 7→ 10

Solution: No heap.

This proposition describes heaps h that are equal to {l 7→ 10} for every location l. Since
there are at least two different locations, say 0 and 1, we get h = {0 7→ 10} = {1 7→ 10},
which is contradictory. Hence no heap satisfies this proposition.

(c) [3 points] (7 7→ 10) → (7 7→ 10)

Solution: All heaps.

The proposition P → P is logically equivalent to True. Hence all heaps satisfy this
proposition.

(d) [3 points] (7 7→ 10) −∗ (7 7→ 10)

Solution: The empty heap and heaps that contain location 7.

The proposition (7 7→ 10) −∗ (7 7→ 10) holds for heaps h where dom h∩{7} = ∅ implies
{7 7→ 10} = h∪{7 7→ 10}. Only if h is empty, the conclusion is true. Only if h contains
location 7, the premise is false.

(e) [3 points] (∃l. l 7→ 12) ∧ (∃n. 7 7→ n)

Solution: Only the singleton heap {7 7→ 12}.
The proposition states that the heap should satisfy both (∃l. l 7→ 12) and (∃n. 7 7→ n).
The first conjunct says that the heap should have exactly one location with value
12. The second conjunct says that heap should have exactly the location 7 with an
arbitrary value. Together this gives that the heap should be the singleton {7 7→ 12}.

Question 6 (15 points)
This exercise is about the verification of the following program using separation logic:

search ll x b ≜ match ll with
| inl () ⇒ ()
| inr node ⇒ (if x = fst (!node) then b := true);

search (snd (!node)) x b
end

The version written in Coq is as follows:

Definition search :=

recclosure: "rec" "ll" "x" "b" =>

match: "ll" with

InjL "_" => VUnit

| InjR "node" =>

(if: "x" =: EFst !"node" then "b" <- VBool true else VUnit);;

"rec" (ESnd !"node") "x" "b"

end.

Exam IMC060 16 June 2023 page 8 of 5

The function search ll x b searches for the value x in the imperative list ll , and modifies the
boolean b to indicate whether x was found. The list is represented as inl () (the empty list), or
inr l′, where l′ is a pointer to a tuple (x, ll ′) containing the head element x and tail list ll ′.

(a) [5 points] Define a predicate is list ll x⃗ that states that ll is a mutable list that contains the
numbers in the mathematical list x⃗. The type of is list should be Val → List N → sepProp.
You can use either math or Coq syntax. If you write Coq code, you are allowed to ignore
coercions such as VNat and VRef.

Solution:

Fixpoint is_list (ll : val) (ns : list nat) : sepProp :=

match ns with

| [] => @[ll = VInjL VUnit]

| n :: ns => Ex l ll’,

@[ll = VInjR (VRef l)] ** l ∼> VPair (VNat n) ll’ ** is_list ll’ ns

end.

(b) [3 points] Consider the following Hoare triple for search ll x b:

{
is list ll x⃗ ∗ b 7→ false

}
search ll x b

{
w. w = () ∗ is list ll x⃗ ∗ b 7→ (x ∈ x⃗)

}

Explain why induction on the list x⃗ is not strong enough to prove this Hoare triple, and give
a strengthened version of the Hoare triple that gives a strong enough induction hypothesis.

Solution: If the ‘if’ succeeds, the value of location b will no longer be false. The
strengthened version is:{

is list ll x⃗ ∗ b 7→ β
}
search ll x b

{
w. w = () ∗ is list ll x⃗ ∗ b 7→ (β ∨ x ∈ x⃗)

}

(c) [7 points] Give a proof outline for the strengthened Hoare triple, which shows that the
definition of search ll x b satisfies the Hoare triple.

Exam IMC060 16 June 2023 page 9 of 5

Solution:

search ll x b ≜
{
is list ll x⃗ ∗ b 7→ β

}
match ll with
| inl () ⇒

{
is list (inl ()) x⃗ ∗ b 7→ β

}
x⃗ = []

(){
w. w = () ∗ is list (inl ()) [] ∗ b 7→ β

}{
w. w = () ∗ is list (inl ()) [] ∗ b 7→ (β ∨ x ∈ [])

}
| inr node ⇒

{
is list (inr node) x⃗ ∗ b 7→ β

}
x⃗ := x1 x⃗2{

node 7→ (x1, v
′) ∗ is list v′ x⃗2 ∗ b 7→ β

}
(if x = fst (!node) then b := true);{
node 7→ (x1, v

′) ∗ is list v′ x⃗2 ∗ b 7→ (β ∨ x = x1)
}

search (snd (!node)) x b{
w.

w = () ∗ node 7→ (x1, v
′) ∗ is list v′ x⃗2 ∗

b 7→ ((β ∨ x = x1) ∨ x ∈ x⃗2)

}
{
w. w = () ∗ is list (inr node) x⃗ ∗ b 7→ (β ∨ x ∈ (x1 x⃗2))

}
end{
w. w = () ∗ is list ll x⃗ ∗ b 7→ (β ∨ x ∈ x⃗)

}

