
Theory exercises

Program verification with types and logic (NWI-IMC060)

Week 6

1. In this exercise, you will extend the lambda calculus with mutable state that we have seen
during the lectures and the Coq exercises with different forms of loops.
(a) Extend the big- and small-step operational semantics with a do e1 while e2 construct as

found in programming languages like C and Java. Explain how your semantics corresponds
to the intuitive semantics. Make sure that you define the semantics in such a way that the
big- and the small-step semantics coincide. Motivate why this is the case.

(b) Extend the big- and small-step operational semantics with a for n = {e1 .. e2} do e3
construct as found in programming languages like Bash and Basic. Explain how your
semantics corresponds to the intuitive semantics. Make sure that you define the semantics
in such a way that the big- and the small-step semantics coincide. Motivate why this is so.

2. Consider the syntax of the programming language TL:

A ::= unit | nat | ref(A)
v ::= () | n | l
e ::= x | v | let x = e1 in e2 | alloc e | ! e | e1 ← e2 | covfefe

TL has three types: the unit type unit (whose only value is the unit value ()), natural numbers
nat (whose values are the numerals n), and references ref(A) to type A (whose values are the
locations l). Apart from the conventional constructs for let-bindings and the heap operations
(alloc e to allocate e, and ! e to deference e, and e1 ← e2 to assign e2 to e1), TL has a new
construct called covfefe, whose typing rules and small-step operational semantics are as follows:

Γ | Σ ` covfefe : unit (covfefe, h)⇒ ((), h)

h(l) 6= None

(covfefe, h)⇒ ((), h[l := 13])

Recall that heaps h are maps from locations to values, and heap typings Σ are maps from
locations to types. The typing rules and rules of the operational semantics for the other
constructs are standard. The notation h[l := 13] sets the value of location l to 13 in heap h.
(a) Does the language TL enjoy the progress property? You should carefully explain what

progress means, and why it holds or not. You do not need to give a formal proof.
(b) Does the language TL enjoy the preservation property? You should carefully explain what

preservation means, and why it holds or not. You do not need to give a formal proof.
(c) Is the language TL type-safe? If you think TL is type-safe, you should carefully explain

your answer, but you do not have to give a formal proof. If you think TL is not type-safe,
you should give an example program that demonstrates that type safety is violated.

1

