Coq Cheatsheet

Program verification with types and logic (NWI-IMC060)
January 26, 2024

Contents

{1 Proof structure and style]

|2 Logical reasoning|
2.1 Tactics that modify the goall
2.2 Tactics that modify a hypothesis| L
2.3 Forward reasoning|

[3 Equality, rewriting, and computation rules|

[4_Inductive types and relations|
ET Tnductive types|« o o o
4.2 Inductive relationsl e
4.3 Getting the right induction hypothesis| oo o oo

[Introduction patterns|

[6_Automationl

[7 Composing tactics|

|8 Searching for lemmas and definitions|

1 Proof structure and style

1.1 Lemma structure

A lemma and proof are stated as follows in Coq:

Lemma lemma_name vars :
lemma statement.
Proof.
tacticl.
tactic2.

Qed.

(G2 SN N W w w W DO DO = =

[}

This declares a lemma called 1lemma_name that says that lemma statement holds for all values of variables
vars. The proof is composed of tactics, which correspond to the inference rules of logic. To develop or view a
proof in Coq, you should use your IDE to step over each tactic one-by-one. This will show the intermediate
proof state between each step. Note that a lemma can equivalently be written as:

Lemma lemma_name :
forall vars, lemma statement.

In this course we favor the version where the top-most universally quantified variables are put in front of
the colon. This makes lemma statements more concise and avoids us from having to introduce the variables
explicitly in the proof.

1.2 Bullets

Some tactics create multiple subgoals, such as the destruct and induction tactic: it creates a subgoal for
each constructor. We have to solve all the subgoals with a bulleted list of tactic scripts:

tacticl.

+ tactic2.
+ tactic3.
+ tactic4.

Bullets can nested by using different bullets for different levels (-, +, *, —-, ++, **):

tacticl.

+ tactic2.
* tactic3
* tactic4.

+ tactich.

We can also enter subgoals using brackets:

tacticl.
{ tactic2. }
{ tactic3. }
tactic4.
{ tactich. }
tactic6.

This is most useful for solving side conditions or small trivial goals like the base case of an induction
proof. With bullets, we get a deep level of nesting if we have a sequence of tactics with side conditions. With
brackets, we do not need to enclose the last subgoal in brackets, thus preventing deep nesting.

If you use the mandatory library file from this course, use of bullets is enforced—Coq will give an error
if you do not use bullets.

1.3 Naming of variables and hypotheses

Many Coq tactics generate automatic names for variables and hypotheses if these are not explicitly given
by the user. For example, if we have the goal P1 -> P2 -> Q, the tactic intros will generate hypotheses H : P1
and H1 : P2. In this course we expect you to name all your variables and hypotheses explicitly.
For instance, in the previous example, write intros HP1 HP2. We use this convention because:
o It makes your proofs more readable for you and your teachers—the hypothesis names directly give you
a clue what the hypothesis is about.
e It makes it much easier to maintain your proof. Say, if you add or remove an intros at the beginning
of your proof, all automatically generated names that follow start to shift.
To avoid having to name every auxiliary hypothesis use introduction patterns as explained in Section [5
The convention to name all variables and hypotheses explicitly is not enforced automatically by Coq, so
you should do that yourself.

2 Logical reasoning

2.1 Tactics that modify the goal

Goal Tactic
P ->Q intros H
~P intros H (Coq defines ~P as P -> False)

forall x, P x intros x
exists x, P x exists x, eexists

P/\Q split (also works for P <-> Q, which is defined as (P -> Q) /\ (@ -> P))

P\/Q left, right

Q apply H, eapply H (where H : (...) -> Qis a lemma or hypothesis with conclusion Q)
False apply H, eapply H (where H : (...) -> ~P is a lemma or hypothesis with conclusion ~P)
Any goal exfalso (turns any goal into False)

Any goal assumption (solves goal if it follows from a hypothesis)

Any goal done (simple solver for trivial goals or contradictory hypotheses)

Any goal admit (skips goal so that you can work on other subgoals)

When using apply H with a lemma H : P1 -> P2 -> (...) -> Q, Coq will create subgoals for each as-
sumption P1, P2, etc. If the lemma has no assumptions, then then apply H finishes the goal.

When using apply H with a quantified lemma H : forall x, (...), Coq will try to automatically find the
right x for you. The apply tactic will fail if Coq cannot determine x. For example, you can then explicitly
choose the instantiation 4 for x using apply (H 4). You can also use eapply H to use an e-var ?x, which
means that the instantiation will be determined later. If there are multiple forall-quantifiers you can do
eapply (H _ _ 4), to let Coq determine the ones where you put _. Similarly, eexists will instantiate an
existential quantifier with an e-var ?x. For example, if your goal is exists n, P n and you have H : P 3,
then you can type eexists; apply H. This automatically determines that n should be 3.

2.2 Tactics that modify a hypothesis

Hypothesis Tactic

H : False destruct H

H:P/\Q destruct H as [H1 H2]

H:P\/Q destruct H as [H1|H2]

H : exists x, P x destruct H as [x H]

H : forall x, P x specialize (H y)

H:P->Q specialize (H G) (where ¢ : P is a lemma or hypothesis)

H:P apply G in H, eapply G in H (where G : P -> (...) is a lemma or hypothesis)
H: P, x: A clear H, clear x (remove hypothesis H or variable x)

2.3 Forward reasoning

Tactic Meaning

assert P as H Create new hypothesis H : P after proving subgoal P

assert P as H by tac Create new hypothesis H : P after proving subgoal P using tac
assert (G := H) Duplicate hypothesis

cut P Split goal Q into two subgoals P -> Q and P

Brackets are useful with the assert tactic:

assert P as H.
{ (x ... proof of P ... %) }

3 Equality, rewriting, and computation rules

Tactic Meaning
reflexivity Solve goal of the form x = x or P <-> P
symmetry Turn goal x = y into y = x (or P <-> Q)

symmetry in H

Turn hypothesis H : x = yintoH : y = x (or P <-> Q)

unfold f

unfold f in H
unfold f in *

Replace constant £ with its definition (only in the goal)
Replace constant £ with its definition (in hypothesis H)
Replace constant £ with its definition (everywhere)

simpl Rewrite with computation rules (in the goal)
simpl in H Rewrite with computation rules (in hypothesis H)
simpl in * Rewrite with computation rules (everywhere)
rewrite H Rewrite H : x = yor H : P <-> Q (in the goal)
rewrite H in G Rewrite H (in hypothesis G)

rewrite H in * Rewrite H (everywhere)

rewrite <-H Rewrite H : x = y backwards

rewrite H, G Rewrite using H and then G

rewrite !H Repeatedly rewrite using H

rewrite 7H Try rewriting using H

subst Substitute away all equations H : x = Aand H : A = x with a variable on one side

injection H as H
discriminate H

simplify
congruen

-€q
ce

Use injectivity of Ctoturn H : C x = C yintoH : x = y

Solve goal with inconsistent assumption H : C x =D y

Automated tactic that performs simpl, subst, injection, and discriminate repeatedly
A solver for ground equalities with uninterpreted symbols and constructors

Rewriting also works with quantified equalities. For example, if you have H : forall nm, n + m =m + n
then you can do rewrite H. Coq will instantiate n and m based on what it finds in the goal. You can specify
a particular instantiation n:=3, m:=5 using rewrite (H 3 5), or m:=5 using rewrite (H _ 5).

4 Inductive types and relations

4.1 Inductive types

Here, foo is bool, nat, list, option, etc.

Term Tactic

x : foo destruct x as [a blc d elf]

x : foo destruct x as [a blc d elf] eqn:Hx (adds equation Hx : x = (...) to context)
x : foo induction x as [a b IH|lc d e IH1 IH2|f IH]

4.2 Inductive relations

Here, foo is Forall, le, etc.

Goal/Hypothesis Tactic

foo x y constructor, econstructor (tries applying all constructors of foo)

H: fooxy destruct H as [a blc d elf] (use when x and y are variables)

H: fooxy induction H as [a b IH|c d e IH1 IH2|f IH] (use when x and y are variables)
H: fooxy inv H (use when x and y are fixed terms)

4.3 Getting the right induction hypothesis

The revert tactic is useful to obtain the correct induction hypothesis:

Hypothesis Tactic
H:P revert H (opposite of intros H: turn goal Q into P -> Q)
x : A revert x (Opposite of intros x: turn goal Q into forall x, Q)

A common pattern is revert x. induction n as ...
A good rule of thumb is that you should create a separate lemma for each inductive argument, so that
induction is only ever used at the start of a lemma (possibly preceded by some revert).

; intros x; simpl.

5 Introduction patterns

The destruct x as pat and intros pat tactics can unpack multiple levels at once using nested intro patterns.
For example, if the goal is (P /\ exists x : option A, Q1 \/ Q2) -> (...) then intros [H [[xI] [GIG]]]
eliminates the conjunction, unpacks the existential, case analyzes the x : option A, and case eliminates the
disjunction (creating 4 subgoals). The intros tactic can also be chained to introduce multiple hypotheses:
intros x y is equivalent to intros x; intros y

Data Pattern
exists x, P [x H]
P/\NQ [H1 H2]
P\/Q [H1|H2]
False 0

A xB [x y]
A+ B [xlyl
option A [x1]
bool [1]
nat [In]
list A [l1x xs]

Inductive type
Inductive type

[a blc d elf]
[1 (unpack with names chosen by Coq)

x =y -> (substitute x with y)

x=y <- (substitute y with x)

Cx1lx2=Cyly2 [= HL H2] (for constructor C, gives H1 : x1 = y1 and H2 : x2 = y2)
Cxtx2=2¢C yty2 [=] (for different constructors ¢ and C’, derives a contradiction)

Any ? (introduce variable/hypothesis with name chosen by Coq, use with care!)

Furthermore, (x & y & z &

...) is equivalent to [x [y [z ...]]1]. This introduction pattern is useful

when unpacking definitions with many nested existentials and conjunctions.
Because exists x, P,P /\ Q, P \/ Q, False are defined as inductive types, their intro patterns are special
cases of the introduction pattern for inductive types, and you can also use the [] intro pattern for them.
Introduction patterns can be used with the assert P as pat tactic, e.g., assert (A = B) as -> or assert
(exists x, P) as [x H]. You can also use them with the apply H in G as pat tactic.

6 Automation

Tactic Meaning

done Simple solver for trivial goals or contradictory hypotheses
simplify_eq Automated tactic that performs simpl, subst, injection, and discriminate repeatedly
congruence Solver for ground equalities with uninterpreted symbols and constructors

lia Solver based on linear integer arithmetic for goals involving nat
tauto Solver for propositional tautologies
eauto Solver based on resolution/backwards-chaining

The eauto tactic tries to solve goals using eapply, reflexivity, eexists, split, left, right. You can
specify the search depth using eauto n (the default is n = 5).

You can give eauto additional lemmas to use with eauto using lemmal, lemma2. You can also use eauto
using foo where foo is an inductive type. This will use all the constructors of foo as lemmas.

7 Composing tactics

Tactic Meaning

tacl; tac2 Do tac2 on all subgoals created by taci
tacl; [tac2]..] Do tac2 only on the first subgoal
tacl; [..ltac2] Do tac2 only on the last subgoal
tacl; [tac2]|..|tac3|tac4] Do tactics on corresponding subgoals
tacl; [tac2|tac3..|tac4] Do tactics on corresponding subgoals
tacl || tac2 Try tac1 and if it fails do tac2

try tacl Try tacl, and do nothing if it fails
repeat tacl Repeatedly do taci until it fails
progress tacl Do tac1 and fail if it does nothing
by tac Shorthand for tac; done

8 Searching for lemmas and definitions

Command Meaning

Search nat Prints all lemmas and definitions about nat

Search (0 + _ = _) Prints all lemmas containing the pattern 0 + _ = _
Search (_ + _=_) 0 Prints all lemmas containing _ + _ = _and 0

Search (list _ -> list _) Prints all definitions and lemmas containing the pattern
Search Nat.add Nat.mul Prints all lemmas relating addition and multiplication
Search "rev" Prints all definitions and lemmas containing substring "rev"
Search "+" "kt n=n Prints all definitions and lemmas containing both +, *, =
Check (1 + 1) Prints the type of 1+1

Compute (1 + 1) Prints the normal form of 1+1

Print Nat.add Prints the definition of Nat.add

About Nat.add Prints information about Nat.add

Locate "+" Prints information about notation +

	Proof structure and style
	Lemma structure
	Bullets
	Naming of variables and hypotheses

	Logical reasoning
	Tactics that modify the goal
	Tactics that modify a hypothesis
	Forward reasoning

	Equality, rewriting, and computation rules
	Inductive types and relations
	Inductive types
	Inductive relations
	Getting the right induction hypothesis

	Introduction patterns
	Automation
	Composing tactics
	Searching for lemmas and definitions

