Exam Program verification with types and logic (IMC060)

14 June 2024

Additional materials (laptops, tablets, phones, calculators, or books) are not allowed.
The use of your own notes is not allowed.

This test consists of 6 questions.

You can obtain 90 points in total. Your final exam grade is determined by:

obtained points

final exam grade = 149 - %0

The division of points among the questions is:

Question: | (1| | [2[| B[| 4| | |5 | [6] | Total

Points: 21 11312 |14 | 15| 15 90

e Read the text and the questions carefully.

Write proofs, terms and types in this test according to the conventions introduced during the
course. Make sure to be very precise.
Make sure to motivate your answer to every question.

Good luck on your test!

Exam IMC060 14 June 2024 page 1 of 12

Question 1 (21 points)
In this exercise you will implement a type checker for a pure programming language, whose
syntax and type system are defined in Coq as follows:

Inductive ty := TBool | TNat | TFun (A B : ty).

Inductive expr :=
| ENat (n : nat)
| EVar (x : string)
| ELam (x : string) (A : ty) (e : expr)
| EApp (el e2 : expr).

Inductive subty : ty -> ty -> Prop :=
| subty_refl A : subty A A
| subty_bool_nat : subty TBool TNat
| subty_fun A1l A2 Bl B2 :
subty B1 Al ->
subty A2 B2 ->
subty (TFun A1 A2) (TFun Bl B2).

Inductive typed : stringmap ty -> expr -> ty -> Prop :=
| Bool_false_typed Gamma :
typed Gamma (ENat 0) TBool
| Bool_true_typed Gamma :
typed Gamma (ENat 1) TBool
| Nat_typed Gamma n :
typed Gamma (ENat n) TNat
| Var_typed Gamma x A :
StringMap.lookup Gamma x = Some A ->
typed Gamma (EVar x) A
| Lam_typed Gamma x e A B :
typed (StringMap.insert x A Gamma) e B ->
typed Gamma (ELam x A e) (TFun A B)
| App_typed Gamma el e2 A B :
typed Gamma el (TFun A B) ->
typed Gamma e2 A ->
typed Gamma (EApp el e2) B
| Subsumption Gamma e A B :
subty A B ->
typed Gamma e A >
typed Gamma e B.

The key feature of this language is that it has a boolean and natural number type (TBool and
TNat), but only natural number literals (ENat n). The literals 0 and 1 can be used as booleans
and natural numbers. The subtyping relation (subty) and subsumption rule (Subsumption) can
be used to coerce expressions of boolean type into natural number type.

(a) [2 points] Explain why the subtyping relation for functions is not defined as:

| subty_fun A1 A2 B1 B2 :
subty A1 B1 -> (* WRONG *)
subty A2 B2 —>
subty (TFun A1 A2) (TFun Bl B2).

(b) [5 points] Our initial attempt to define a bool version of the subtyping relation is:

Exam IMC060 14 June 2024 page 2 of 12

Fixpoint bsubty (A1 A2 : ty) : bool :=
match Al, A2 with
| TBool, TBool => true
| TNat, TNat => true
| TBool, TNat => true
| TFun A1 A2, TFun Bl B2 => bsubty Bl Al && bsubty A2 B2
| => false

- =

end.

Explain why Coq does not accept this definition, and give an alternative definition that
will be accepted by Coq. You are recommended to introduce an auxiliary Fixpoint.

(c) [7 points] Give an implementation of the type checker:

Fixpoint type_check (Gamma : stringmap ty) (e : expr) : option ty :=
(* FILL OUT *)

Your type checker should satisfy the following correctness lemma:

Lemma type_check_correct Gamma e A :
typed Gamma e A <-> exists B, type_check Gamma e = Some B /\ subty B A.

You are recommended to use the usual operations on finite maps and the bsubty function
(even if you did not complete Question |1.Db]).

(d) [2 points] Explain whether it is possible to define a type checker that satisfies:

Lemma type_check_correct_strong Gamma e A :
typed Gamma e A <-> type_check Gamma e = Some A.

(e) [5 points] We extend our language with an if-then-else construct:

Inductive expr :=
(¥ same as before *)
| EIf (el e2 e3 : expr).

Inductive typed : stringmap ty -> expr -> ty -> Prop :=
(* same as before *)
| If_typed Gamma el e2 e3 B :
typed Gamma el TBool ->
typed Gamma e2 B ->
typed Gamma e3 B ->
typed Gamma (EIf el e2 e3) B.

Give the additional Coq code that needs to be added to the type_check function (you do
not need to copy the entire prior code). Your new type_check function needs to satisfy the
lemma type_check_correct from Question [I.d

You are allowed to introduce an auxiliary function on ty. You are not required to give the
implementation of that function, but you should describe clearly its behavior in English.

Exam IMC060 14 June 2024 page 3 of 12

Question 2 (13 points)
Consider a small programming language, which, similar to Rust, has a panic expression that
safely terminates execution of the program:

vi=nl|b (neN,beB)
Ou=+4|x|=
ex=x|v|letx=e; ines | e ®ey | panic

The semantics of the language is given using a small-step operational semantics. Its head
reduction relation = and whole-program reduction relation = are inductively defined as:

eval bin op ® v V3 = w e1 = €9 ctx k

(let z =v ine) =p subst z v e (v1 ©v2) =p w ke = ke

Note that panic does not have a reduction rule!
Evaluation contexts are defined as follows:

Inductive ctx : (expr -> expr) -> Prop :=
| Let_ctx y e2 : ctx (fun x => ELet y x e2)
| Op_r_ctx op el : ctx (EOp op el)
| Op_1l_ctx op v2 : ctx (fun x => EOp op x (EVal v2))
| Id_ctx : ctx (fun x => x)
| Compose_ctx k1 k2 : ctx k1 -> ctx k2 -> ctx (fun x => k1 (k2 x)).

(a) [5 points] Define a predicate safe : expr — Prop that describes whether an expression is
safe. Explain why your definition correctly captures safety.

Examples of safe expressions:

® panic

e 2+ panic

e (54 true) + panic, due to right-to-left evaluation panic is executed before 5 4 true
Examples of unsafe expressions:

e 5+ true
e panic + (5 + true), due to right-to-left evaluation 5 + true is executed before panic

(b) [3 points] Give the (Coq) type for an interpreter for this language. The interpreter should
given a expression be able to tell whether it safely results in a value, panics, or is unsafe.
You do not have to give the implementation of the interpreter.

(c) [5 points] Give the correctness lemma for your interpreter.

Exam IMC060 14 June 2024 page 4 of 12

Question 3 (12 points)
Consider a Rust library that provides the type Foo<T> with the following methods:

Foo:
Foo:

:new(val : T) -> Foo<T>
:replace(&self, val : T) -> T

The new method wraps a value into a Foo. The replace method allows one to replace the value
of a Foo via a shared reference: it “moves out” the old value, and “moves in” the new value. A
sample program that uses this library is as follows:

fn main() {
let x = Foo::new(10);
let rl1 = &x;
let r2 = &x;
println! ("{}", r2.replace(12)); // Prints 10
println! ("{}", rl.replace(14)); // Prints 12

(a)

()
(d)

[3 points| Consider the following additional method for Foo<T> that retrieves the value:

Foo::get(&self) -> T

Explain whether safety of Rust is preserved by adding the get method. If not, your
explanation should include a well-typed Rust program that uses the get method, but has a
memory error (e.g., use-after-free).

[3 points] Consider the following additional method for Foo<T> that overwrites the value:

Foo: :set(&self, value : T) -> ()

Explain whether safety of Rust is preserved by adding the set method. If not, your
explanation should include a well-typed Rust program that uses the get method, but has a
memory error (e.g., use-after-free).

[3 points] Explain whether Foo<T> could be Send. (Your answer is allowed to depend on
whether T is Send or Sync.)

[3 points] Explain whether Foo<T> could be Sync. (Your answer is allowed to depend on
whether T is Send or Sync.)

Exam IMC060 14 June 2024 page 5 of 12

Question 4 (14 points)
We consider substructural typing for a programming language with references. Consider the
following semantic interpretation for the typing judgment:

['Fe: A=V ctx typed I' 7 = WP (subst_map @' €) [v. Av * True]

emp if I' = []

ctx typed I 7 = . o
Fu. lookup ¥z = Somewv *x Av xctx_typed IV ¢ if ' = (z, A) :: T/

Here, ¥ ranges over finite maps from variables names to values, subst_map ¥ e is the parallel
substitution, and ctx_typed I' ¥ is the semantic context typing. Contexts I' are lists that associate
types to variable names (i.e., they can have multiple bindings for the same variable).

(a) [4 points] Explain whether the “weakening rule” holds in a type system with the above

semantic interpretation. Recall, the weakening rule is as follows:

'e:B x ¢ domT
r:AT'Fe:B

(b) [4 points] Explain whether the “contraction rule” holds in a type system with the above
semantic interpretation? Recall, the contraction rule is as follows:
v:Axz:ATFe:B x ¢ domT
r:AT'Fe:B

(c) [6 points] State the “type safety” theorem for linear languages from week 12, and explain
which parts of this theorem do and do not hold for the above semantic interpretation.

Question 5 (15 points)
For each question you should explain your answer!
(a) [3 points] State precisely the set of heaps described by Im. I} — 1 Aly +— m.
(b)
(c) [3 points] State precisely the set of heaps described by [+— 5 (I — 10 — False).
(d)

[3 points| State precisely the set of heaps described by I+ 5% (I — 10 — True).

[3 points] Give a separation logic assertion that describes the heaps where all locations
have a value that is unequal to 10.

(e) [3 points] Give a program e that satisfies:
[Tk l—kxk—l]le[w w=/()]

(Recall that the separation logic assertion x = y is only satisfied when the heap is empty.)

Exam IMC060 14 June 2024 page 6 of 12

Question 6 (15 points)
Consider a Coq inductive type for binary trees and a function that computes the depth:
Inductive tree :=

| leaf : nat -> tree
| node : tree -> tree -> tree.

Fixpoint depth_coq (t : tree) : nat :=
match t with

| leaf _ => 0
| node t1 t2 => S (Nat.max (depth_coq t1) (depth_coq t2))
end.

And an imperative version of the depth function:

Definition depth :=
recclosure: "rec" "1" "k" "d" =>
match: !"1" with
InjL "n" =>
if: !"k" <: "d" then
"k" <= "d";; VUnit

else VUnit

| InjR "node" =>
let: "11" := EFst "node" in
let: "1lr" := ESnd "node" in

llrecll II11II ||k|| (||d|| +: VNat 1) HA
"yrec" "1r" "k" ("d" +: VNat 1)
end.

(a) [4 points] Define a representation predicate is_tree [t in separation logic that states that
at location [there is a mutable tree that matches up with the inductive Coq tree t. The
type of is_tree should be 1loc — tree — sepProp. You can use either math or Coq syntax.
You are allowed to ignore/leave implicit coercions such as VNat and VRef.

(b) [4 points] Our goal is to prove the following Hoare triple:
[is_tree l txk+> 0]depthl k O[w. w = () x is_tree [t * k — (depth_coq t)]

To prove this Hoare triple by induction you need a strengthened version that provides a
sufficient induction hypothesis. Give the strengthened version of the Hoare triple.

(¢) [7 points] Give a proof outline for your strengthened version of the Hoare triple.

