Theory exercises

Program verification with types and logic (NWI-IMCO060)

Week 2 and 3

1. This exercise is about basic programming and proofs in Coq.

(a)

Define a function:

Fixpoint leb (n m : nat) : bool :=
(* FILL OUT HERE *)

that returns true if a the natural number n is smaller or equal to m, and false otherwise.
An alternative way to define inequality of natural number is:

Definition le (n m : nat) : Prop := exists k, m = n + k.

Explain the difference between 1le and leb. As part of your answer you should formally
explain how le and leb are related by stating a Coq lemma. You do not have to give a
proof for the lemma that you have stated.

For the following lemmas, explain whether you would prove them by simplification (simpl),
case analysis (destruct), or induction (induction). Also explain whether or not you would

use discriminate.

1. forall nm, leb (Sn) (Sm) =lebnm
forall n, 1leb O n
forall n, lebn O = true -> n =0

forall n, leb n n = true

forall nmk, leb (k +n) (k +m) = lebnm

forall n m k, lebnm = true -> lebm k = true -> leb n k = true

true

AN

2. For a type A we have the following notions of equality in Coq:

eq : A > A -> Prop
egb : A -> A -> bool
dec : forall x1 x2 : A, { eq x1 x2 } + { ~eq x1 x2 }.

This question is about these three notions of equality.

(a) Explain the difference between eq and eqb. You should give the formal equivalence between

eq and eqgb as a Lemma in Coq syntax.

(b) Explain the type forall x1 x2 : A, { eq x1 x2 } + { ~eq x1 x2 } of dec.

(¢) Define eqgb in terms of dec. Explain how to prove the Lemma of Exercise [a] for your definition

of eqb. You do not need to give a Coq proof script, but you should give a clear description
of how the proof is carried out.



3. To express whether an element x is in a list xs, we define a recursive predicate in Coq:

Fixpoint In {A} (x : A) (xs : list A) : Prop :=
match xs with

| [0 => False
| x'::xs' => x =x' \/ In x xs'
end.

(a) Give a version of In with return type bool instead of return type Prop. You are allowed to
restrict to certain kinds of types A, but you should clearly describe the class of types you
consider.

(b) Assume that you have the following function at your disposal:

Fixpoint app {A} (xsl xs2 : list A) : list A :=
match xsl with

I [0 =>xs2
| x :: xs1 => x :: app xsl xs2
end.

Write a non-recursive definition for In using app that is logically equivalent to the definition
of In above.

Definition In {A} (x : A) (xs : list A) : Prop :=
(* YOUR ANSWER HERE *)

(c) Consider the following function that transforms a list point-wise:

Fixpoint map {A B} (f : A -> B) (xs : list A) :=
match xs with

I 0=10
| x::xs' => (£ x)::(map £ xs')
end.

Can the following lemma be proved?
Lemma In_map {A B} (f : A ->B) (x : A) (xs : list A) :

In (f x) (map £ xs) <-> In x xs.

If the lemma can be proved, explain which tactics you would use to perform the proof (you
do not have to give a proof script). If the lemma cannot be proved, give a counterexample.

(d) Give a lemma that completely characterizes the elements of map f xs, i.e., applies to all
values y rather than only those of the form £ x:

Lemma In_map {A B} (f : A ->B) (y : B) (xs : list A) :
In y (map f xs) <-> (* YOUR ANSWER HERE *)



