Commit 795797a0 authored by Paul Fiterau Brostean's avatar Paul Fiterau Brostean
Browse files

Smarter translation

parent fb798f58
......@@ -80,7 +80,7 @@ def scalable_learn_mbt_ra():
def sim_learn_mbt_yan_mealy(dot_path):
learner = FAILearner(MealyTreeIEncoder())# FALearner(MealyEncoder())
learner = FALearner(MealyEncoder())
dot_aut = build_automaton_from_dot("MealyMachine", dot_path)
dot_sut = MealyMachineSimulation(dot_aut)
......@@ -178,7 +178,7 @@ b = Benchmark()
# add the sut classes we want to benchmark
b.add_sut(LoginClass(), SUTType.Mealy)
b.add_sut(LoginClass(), SUTType.DFA)
#b.add_sut(FIFOSetClass(), SUTType.DFA)
......@@ -13,10 +13,10 @@ class FSM(Automaton,metaclass=ABCMeta):
self.start = self.states[0]
class DFA(FSM):
def __init__(self, labels, num_states):
def __init__(self, labels, num_states, state_enum=declsort_enum, label_enum=declsort_enum):
super().__init__(num_states, state_enum=state_enum)
labels = list(labels)
self.Label, elements = dt_enum('Label', labels)
self.Label, elements = label_enum('Label', labels)
self.labels = {labels[i]: elements[i] for i in range(len(labels))}
self.transition = z3.Function('transition', self.State, self.Label, self.State)
self.output = z3.Function('output', self.State, z3.BoolSort())
......@@ -86,7 +86,7 @@ class DFABuilder(object):
self.dfa = dfa
def build_dfa(self, m : z3.ModelRef) -> model.fa.DFA:
tr = FATranslator(self.dfa)
tr = DFATranslator(m, self.dfa)
mut_dfa = model.fa.MutableDFA()
for state in self.dfa.states:
accepting = m.eval(self.dfa.output(state))
......@@ -103,47 +103,39 @@ class DFABuilder(object):
return mut_dfa.to_immutable()
class MealyTranslator(object):
"""Provides translation from z3 constants to RA elements. """
def __init__(self, model, mm: MealyMachine):
"""Provides translation from z3 constants to Mealy elements. It evaluates everything (s.t. variables are resolved
to their actual values), enabling it to translate both variables and values."""
def __init__(self, model : z3.ModelRef, mm: MealyMachine):
self._model = model
self._mm = mm
self._z3_to_inp = dict(map(reversed, mm.inputs.items()))
self._z3_to_out = dict(map(reversed, mm.outputs.items()))
self._z3_to_inp = {model.eval(mm.inputs[inp]):inp for inp in mm.inputs.keys() }
self._z3_to_out = {model.eval(mm.outputs[out]):out for out in mm.outputs.keys() }
self._z3_states = list(map(model.eval, mm.states))
def z3_to_state(self, z3state):
if z3state in self._mm.states:
return "q" + str(self._mm.states.index(z3state))
return "q" + str(list(map(self._model.eval, self._mm.states)).index(z3state))
return "q" + str(self._z3_states.index(self._model.eval(z3state)))
def z3_to_input(self, z3label):
if z3label in self._z3_to_inp:
return self._z3_to_inp[z3label]
for inp in self._z3_to_inp:
if self._model.eval(inp) == self._model.eval(z3label):
return self._z3_to_inp[inp]
return self._z3_to_inp[self._model.eval(z3label)]
def z3_to_output(self, z3label):
if z3label in self._z3_to_out:
return self._z3_to_out[z3label]
for out in self._z3_to_out:
if self._model.eval(out) == self._model.eval(z3label):
return self._z3_to_out[out]
class FATranslator(object):
"""Provides translation from z3 constants to RA elements. """
def __init__(self, fa:FSM):
self.fa = fa
return self._z3_to_out[self._model.eval(z3label)]
class DFATranslator(object):
"""Provides translation from z3 constants to DFA elements. """
def __init__(self, model : z3.ModelRef, fa:DFA):
self._fa = fa
self._z3_to_label = {model.eval(fa.labels[inp]): inp for inp in fa.labels.keys()}
self._z3_states = list(map(model.eval, fa.states))
self._model = model
def z3_to_bool(self, z3bool):
return str(z3bool) == "True"
def z3_to_state(self, z3state):
return "q"+str(self.fa.states.index(z3state))
return "q"+str(self._z3_states.index(self._model.eval(z3state)))
def z3_to_label(self, z3label):
return str(z3label)
return self._z3_to_label[self._model.eval(z3label)]
......@@ -29,7 +29,14 @@ class DFAEncoder(Encoder):
return dfa, constraints
def axioms(self, dfa: DFA, mapper: Mapper):
return []
return [
z3.And([z3.And([z3.Or([dfa.transition(state, label) == to_state
for to_state in dfa.states]) for state in dfa.states])
for label in dfa.labels.values()]),
z3.Distinct([mapper.element( for node in self.cache])
def node_constraints(self, dfa, mapper):
constraints = []
......@@ -6,23 +6,22 @@ from model import Automaton
import define.fa
class FALearner(Learner):
def __init__(self, encoder, solver=None, verbose=False, stop_unknown=False):
def __init__(self, encoder, solver=None, verbose=False):
if not solver:
solver = z3.Solver()
self.solver = solver
self.encoder = encoder
self.verbose = verbose
self.stop_unknown = stop_unknown
def add(self, trace):
def model(self, min_states=1, max_states=20, old_definition:define.fa.FSM=None) -> Tuple[Automaton, define.fa.FSM]:
def model(self, min_states=1, max_states=20, old_definition:define.fa.FSM=None, ensure_min=False) -> Tuple[Automaton, define.fa.FSM]:
if old_definition is not None:
min_states = len(old_definition.states)
(succ, fa, m) = self._learn_model(min_states=min_states,
max_states=max_states, ensure_min=ensure_min)
if succ:
return fa.export(m), fa
......@@ -33,7 +32,7 @@ class FALearner(Learner):
# to = fa
# return (None, to)
def _learn_model(self, min_states=1, max_states=10):
def _learn_model(self, min_states=1, max_states=10, ensure_min=False):
"""generates the definition and model for an fa whose traces include the traces added so far
In case of failure, the second argument of the tuple signals occurrence of a timeout"""
for num_states in range(min_states, max_states + 1):
......@@ -51,8 +50,8 @@ class FALearner(Learner):
model = self.solver.model()
return (True, fa, model)
# timeout
if result == z3.unknown and self.stop_unknown:
# timeout, if minimality guarantee is required, we have to stop here
if result == z3.unknown and ensure_min:
return (False, True, None)
# TODO: process the unsat core?
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment